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1. INTRODUCTION
In 1938 A. Ostrowski proved the following integral inequality ([17]or![16, p. 468]).

Theorem 1.1.Let f : I — R, wherel C R is an interval, be a mapping differentiable in the
interior Int I of I, and leta,b € Int I,a < b. If ]f’(t)\ < M, Vt € [a,b], then we have

(1.1) ’ /f dt‘ ( —5)

(b—a)
for x € [a, b].

] (b—a)M,

The first (direct) generalization of Ostrowski’s inequality was given by G.V. Milovanovi
and J. Péaric in [14]. In recent years a number of authors have written about generalizations of
Ostrowski’s inequality. For example, this topic is consideredlin [2], [4], [6], [9] and [14]. In this
way, some new types of inequalities have been formed, such as inequalities of Ostrowski-Griiss
type, inequalities of Ostrowski-Chebyshev type, etc. The first inequality of Ostrowski-Grlss
type was given by S.S. Dragomir and S. Wanglin [6]. It was generalized and improved in
[9]. X.L. Cheng gave a sharp version of the mentioned inequality|in [4]. The first multivariate
version of Ostrowski's inequality was given by G.V. Milovanovn [12] (see alsol[13] and
[16, p. 468]). Multivariate versions of Ostrowski’s inequality were also considered in[3], [7]
and [11]. In this paper we give a general two-dimensional Ostrowski-Gruss inequality. For
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2 NENAD UJEVIC

that purpose, we introduce specially defined polynomials, which can be considered as harmonic
or Appell-like polynomials in two dimensions. In Sectiph 3 we use the mentioned general
inequality to obtain a particular two-dimensional Ostrowski-Gruss type inequality.

2. A GENERAL OSTROWSKI-GRUSSINEQUALITY

Let Q@ = [a,b] x [a,b] and letf : Q@ — R be a given function. Here we suppose that
f € C?(Q). Let Py(s) andQy(t) be harmonic or Appell-like polynomials, i.e.

(2.2) P(s) = P._1(s) and@}(t) = Qr_1(t), k=1,2,...,n+1,
with

(2.2) Py(s) = Qo(t) =1

We also define

(2.3) Ri(s,t) = P(s)Qk(t), k=0,1,2,...,n+ 1.
Lemma 2.1. Let Ry (s, t) be defined by (2/3). Then we have

(2.4) % = Ri_1(s,1)

fork=1,2,...,n+1.
Proof. From [2.1) —[(2.B) it follows that

82Rk(8,t) . 2 0Rk(s,t)
dsot Ot 0s

0
= = (PL5)Q()

= Pio1(s)Q4(t)
= Pp1(8)Qr-1(t) = Rp—1(s,1).

O
We now define

’ 0% 1 (b, 1) 9% f(a,t)

(2.5) Jp = /a |:Rk(b7 t)W — Rk(aat)W] dt,
o1 £(b,1) 011 (a,1)

(26) Up— 1(t) W, Uk_l(t) = W,
fork =1,2,...,n. We also define

b an—l b,t b
(2.7) Ji1 —/ Rk(b,t)w_—{(atk)dt—]?k(b)/ Qr(t)u”, (t)dt
and

b an 1 a t
(2.8) Jp2 = / Ry(a,t) 9 fl(atk: = Pi(a / Qr(t) Uk 1 )dt
such that
(29) Jk - Jk71 - Jk’g.
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Lemma 2.2. Let J,; be defined by (217). Then we have

(2.10) Jp1 = Pu(b

M;r

DM Q00 (0) = Qslayuf " (a)]

J=1

b
+(—1)’ka(b)/ w1 (t)dt,
fork=1,2,....n

Proof. We introduce the notation

i (uk—1) /Qk Ukl

(—1) sl 1) = / Q) (¢
= (1) [Qu®)u (1) — Qe (o)
b
0 [ Qe v
We can write the above relation in the form

(~D V(1) = (=D [ Qa0 (0) = Qul@uf(@)] + (~1) Ui (),

In a similar way we get

Then we have

(—D* Uy (wper) = (15 [ Quo (Du V(2 dt

a

= (-)* [@k 102 (6) = Qa0 (o)

0 [ Quatont o

or
(=) Up 1 (up—1)
= (=D Qe (02 (0) = Qea(@)uf 7 (@)] + (12U 2 (s ).
If we continue the above procedure then we obtain

(—1)* U (ug—1)

(=1 [0 (1) = Qs(a)u (@) | + o)

1

<.
Il

M»

17 [@0 0 - @@ @)] + [

1

.
Il

Note now that
Jk1 = Pe(b)Ur(up—1)
such that[(2.710) holds.
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Lemma 2.3. Let J, , be defined by (2|8). Then we have

Mw

(211)  Jeo = Bl@) Y (=D Q0050 0) - Qs (@)

]=1
+ (=1)*Py(a) /b vg—1(t)dt,
fork=1,2,...,n
Proof. The proof is almost identical to that of Lemina]2.2.

We now define

b TORk(s,b) 0% 2f(s,b)  ORk(s,a) & 2f(s,
R e =
fork=2,...,n

ak 1 b 8k_1
(2.13) zr_1(8) = %, Ur-1(8) = #
and
b b

(2.14) Ki= @) [ o(s)ds = Qula) [ (s

We also define

@19 K= LG i (A0 PO / P ()2 (s)ds

0s Osk—10tk—1
and

Y OR(s,a) 0% 2f(s,a b
(2.16) Ko = / ’z;)fs ) ask_;fa(tk_l)dszcgk(a) / P (s)yi " (s)ds

such that

(217) Kk:KkJ—Kk,g,k’:l,Q,...,n
Lemma 2.4. Let K, ; be defined by (2.15). Then we have

k
18) K= Qu(b) 3 (-1 [Pa(®)af P(b) — Pra(a)a (@)

fork=2....n

Proof. We introduce the notation

b
Ug—1(zg—1) :/ Pk_l(s)x,gk__ll)(s)ds.
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Then we have

We can write the above relation in the form
(=D U1 (v4-1)
= (=" [P 052 (0) = Pea(@)2f5(@)] + (12U ().
In a similar way we get
b
(—=1)F2Up_a(m_1) = (—1)F 2/ Po_o(s)2" 2 (s)ds
D2 [Aa(®)r0 () = Peal@)af (0)

+ (-1 / P s(s)ai ) ()ds
or ’
(=) 2Ur—a (1)
= (=12 [ Ps () (0) = Pea(@)z7(0)] + (=1 Uy a(i).
If we continue the above procedure then we get
(=)' g (2-1)

= > [Pa®)al Y (6) — Proa(@)al (@) + Uo(ano)

(—1)71 [pjil(b)xl(g 12)(b) — Pj,l(a)xl(g 12)<a)] + /ab:ckl(t)dt.

Note now that
Ki1 = Qr(b)U—1(zk-1)
such that[(2.18) holds.

Lemma 2.5. Let K}, » be defined by (2.16). Then we have

M»

(219 Kz =Qul@) (-1 [Ba®u S 0) - Bl ()]

J=2

b
+ (—l)k_le(a)/ Yr—1(8)ds,
fork=2....n
Proof. The proof is almost identical to that of Leminaj|2.4.
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Let (X, (-,-)) el = 1. Let~,p,I',® be real
numbers and, y € X such that the conditions
(2.20) (Pe —xz,x — pe) > 0and (I'e —y,y —ve) >0
hold. In [S] we can find the inequality
1
We also have
(2.22) (@, y) = (@ e) (g, )] < (=] = (z,€)*)* (lyl* = (e,9)*)* -

Let X = Ly(Q2) ande = 1/(b — a). If we define

(2.23) T(f,g) = //fts (t, s)dtds

b_a //ftsdtds// (t, s)dtds,

then from [2.2D) and (2.21) we obtain the Griiss inequalitiiff2),

(2.24) T(f,9)l < (T =)(® —¢),
if

o | =

< flay) ST, p<glzy) < (z,y) €
From (2.22), we have the pre-Gruss inequality

(2.25) T(f,9)* <T(f /)T (9,9)

We now define

(2.26) I, = / / st a:f ;tnt>d dt
and

0% f(s,t)
(2.27) S, b_a / / stdsdt/ / e R GL

Lemma 2.6. Let /,, and S,, be defined by (2.26) anfl (2]27), respectively. Then we have the
inequality

MQn — Moy

(2.28) I, — Sa| < C(b—a)?,

where
Prf(s.t) . 9Pf(s,h)

M, = max —————=, My, = min
T snea dsmot TN (speq Dsnotr

and

(229)  C= {(b_a / ds/ Qn(t)
o (/ s [t dt)}
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Proof. From (2.28),((2.26) andl (2.27) we see that
I, — S, = (b—a)*T <Rn(s, t),

Then from [2.2b) we get

" f(s,t)
osmotr )

0% f (s, 1) a%ﬂs,t))é

. < o 2 2
= 50l < 0= 0T (Rafs 0, Rl )} 7 (L2000 TS

From (2.24) we have

T 62nf(87t) aan(S)t) % < M2n — Moy
Osmotn 7 Osnot™ - 2 '

We also have

T (R,(s,1), Ru(s,1))

(b—a / ds/ Qn(t) b_ G—ar (/aan(s)ds/aan(t)dt)Q.

From the last three relations we see that (2.28) holds. O

Theorem 2.7.LetQ) = [a,b] X [a,b] and letf : Q2 — R be a given function such thgt €
C?"(12). Let the conditions of Lemnha 2.6 hold.JIf, K, are given by[(2]9)[(2.17), wher# 1,
Ji2: K1, K2 are given by Lemmas 2.4 — 2.5, then we have the inequality

b b = = M2n — Moy 2
(2.30) / / fls,t)dsdt+ > J =Y Kp—S — 5 Cb—a),
k=1 k=1
where
1
(2-31) Sp = (b _ a)g [Pn-i-l(b) - n+1( )] [Qn-H( ) - Qn-‘rl(a)]
X [U(b, b) - U(b, CL) - U(CL7 b) + v(a, CL)] )
andu(s,t) = %
Proof. We have
b b 82nf(57 t)
(232) In —/a /(; Rn(S,t)Wdet

b o [0 f(s.1)
—/a dt/a Rn(S,t)% [W} ds
b P £ (b, 1) 1 f(a,)
= [ o0 Tl — Rt T

OR,(s,t) "1 f(s,1)
/ / as gan-1gpn (st

:Jn—

OR,(s,t) 0?1 f(s,t)
b= / / as psrtom ¢

where
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We also have

- OR.( 922 f(s, 1)
_/ / (’33 [(95” Lotn— 1} dat
:/ [aR s,b) 0*"~ 2f(s b)  OR,(s,a) 82”_2f(5,a)} s

0s Jsn—1otn—1 0s Osn—lon—1

aQn Zf(s t)
//Rnl anlatnlddt

IL,=J,—K,+ 1, 1.

- Kn — In—1-

Hence, we have

In a similar way we obtain
[nfl = Jnfl - anl + [n72-
If we continue this procedure then we get

(2.33) Li=> Ji=> K+,
k=1 k=1
where
b b
(2.34) ]0:/ / f(s,t)dsdt.
We now consider the term
_ "9 f(s, 1)
(2.35) S, = b—a //R stdsdt/a - oo —— " 2 dsdt.
We have
b b b b
/ / Rn(s,t)dsdt:/ Pn(s)ds/ Qn(t)dt
= [Prt1(0) = Poy1(a)] [Qns1(b) — Qnya(a)]

and

0* f(s,t)
/ / Lo e GO
0P f(s,t)

/dt/ as[ dsn1otn ]ds
:/ [82” L) 0P f(a, t)}dt

o | 0s" ot asn—Lotn

P2 f(b,b) 0P 2f(bya) 9P f(ab) | 0% 'f(a,a)
T Osn ot sl dsnlotnl | gsnolgp ]
= [v(b,b) — v(b,a) — v(a,b) + v(a,a)],

Thus [2.31) holds. Fronj (2.B3) F (2]35) we see that
b b n n
I, — S, = / / fls,t)dsdt + Y T — Y Ky —
a va k=1 k=1

Then from Lemma@ Z]6 we conclude that (3.30) holds.

J. Inequal. Pure and Appl. Math4(5) Art. 101, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

OSTROWSKFGRUSS TYPEINEQUALITIES IN TWO DIMENSIONS 9

3. A PARTICULAR INEQUALITY

Here we use the notations introduced in Secfipn 2. In Thegrem 2.7 we proved a general
inequality of Ostrowski-Griss type. Many particular inequalities can be obtained if we choose
specific harmonic or Appell-like polynomialB, (s), Qx(t) in (2.30). For example, i [8] we
can find the following harmonic polynomials

1 k
Sl —a)t,

1 a+b k
Pk(s):E(s— 5 ) ,

Rt (=]

R (=

whereBy(s) andEy(s) are Bernoulliand Euler polynomials, respectively. We shall not consider
all possible combinations of these polynomials. Here we choose the following combination

G0 Puls) = (b;!a)kB’“ (2:2) - Gl = <b;!a)k3’“ (Z:Z) '

Pk(s)

We now substitute the above polynomials[in (2.10), (2.11), (2.L8),](2.19) to obtain

(32) Ji1 = Jin

(b— a)k k—j (b —a)
= B ()T

Jj=1

k b
< [Bu0) - oW @] + s [

(3.3) Jro = Jio

-8 o 031" e “” |B;(0u 1) = Bi(0p (@)
—a k b
+ im0 / vt
(3.4) K1 = Ky,

(b—a)* : kejpr (0 —a) ™!

i Bk(l);(—l) G-
< [Ba (a2 ) = By (0 (@)
(b= o)
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and
(3.5) Kyp = Ky
(b—a) g (b=
= Bi(0) Y (—1)F I
k! < G- D)
X By (s 0) = By 0y (a)]
bh— k b
B0 [
We have
(36) Jk = jk = jk,l —jk’g,kz 1,2,...,77,,
(37) Kk:}?kzkk’l—fi(k’g, k:2,...,n
and
B b —a b b
(3.8) K, = 5 [/ zo(s)ds +/ yg(s)ds} :

whereJy 1, Ji2, Ki1, K, are defined by (3]2) £ (3.5), respectively.
Basic properties of Bernoulli polynomials can be found in [1]. Here we emphasize the fol-
lowing properties:

1
(3.9) / Bi(s)ds =0, k=1,2,...
0
and
3.10 1B B:(s)ds = (—1)F1 Gtk B k,j=1,2
(' ) 0 k(S) ](S)S_(_) W k471 ) =L 4,...,
where
(3.11) By = Bg(0),k=0,1,2,...
are Bernoulli numbers. We also have
(312) BQi+1 :O,Z = 1,2,...,
(3.13) Bi(0) = Bi(1) = B, k=0,2,3,4, ...,
and, in particular,
1 1
(3.14) B1(0) = 5 Bi(1) = 5
From (3.2) —[(3.B) and (3.12) we see that
(315) j2i+1 = K2i+1 :O, 1= 1,2,...,n.

Note also that sums if (3.2) - (8.5) have only even-indexed terms and the tejea fofj = 2)
IS non-zero.
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Theorem 3.1. Under the assumptions of Theorem| 2.7 we have

b b n n
/ / f(s,t)dsdt—i—ij—ZKk <
a Ja k=1 k=1

whereB;, are Bernoulli numbers and,, K, are given by[(3J6)[ (3]7), respectively.

M2n — Moy . |BQn|
(2n)!

(3.16) (b— a)2+2,

Proof. The proof follows from the proof of Theorem 2.7, since the following is valid. Bgt
and@,, be defined by (3]1), fok = n.
Firstly, we have

b rb 92n
O f(s.t) o
n b — CL / / S t det/a ] Wdfﬁdt = 0,

since
/ab /a:“’”det -/ R(s)s / Qur
(o)
_ |- a!)”+1 /1 B.(5) |
because of (3]9). 0

Secondly, we have

o=t [ e [ g ([ oo [ ason)
[ ap [ P [ @ dt]

b
- bia/ P, (s)*ds
1 ( —a)Z”“ ! 2
- /D Bu(s)2ds
_(b—a) (n')2

(nh)? (20
since [(3.1D) holds. O

\/
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