

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 101, 2003

OSTROWSKI-GRÜSS TYPE INEQUALITIES IN TWO DIMENSIONS

NENAD UJEVIĆ

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SPLIT TESLINA 12/III, 21000 SPLIT CROATIA.

ujevic@pmfst.hr

Received 08 January, 2003; accepted 07 August, 2003 Communicated by B.G. Pachpatte

ABSTRACT. A general Ostrowski-Grüss type inequality in two dimensions is established. A particular inequality of the same type is also given.

Key words and phrases: Ostrowski's inequality, 2-dimensional generalization, Ostrowski-Grüss inequality.

2000 Mathematics Subject Classification. 26D10, 26D15.

1. Introduction

In 1938 A. Ostrowski proved the following integral inequality ([17] or [16, p. 468]).

Theorem 1.1. Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, be a mapping differentiable in the interior $Int\ I$ of I, and let $a, b \in Int\ I$, a < b. If $|f'(t)| \le M$, $\forall t \in [a, b]$, then we have

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_a^b f(t)dt \right| \le \left[\frac{1}{4} + \frac{(x - \frac{a+b}{2})^2}{(b-a)^2} \right] (b-a)M,$$

for $x \in [a, b]$.

The first (direct) generalization of Ostrowski's inequality was given by G.V. Milovanović and J. Pečarić in [14]. In recent years a number of authors have written about generalizations of Ostrowski's inequality. For example, this topic is considered in [2], [4], [6], [9] and [14]. In this way, some new types of inequalities have been formed, such as inequalities of Ostrowski-Grüss type, inequalities of Ostrowski-Chebyshev type, etc. The first inequality of Ostrowski-Grüss type was given by S.S. Dragomir and S. Wang in [6]. It was generalized and improved in [9]. X.L. Cheng gave a sharp version of the mentioned inequality in [4]. The first multivariate version of Ostrowski's inequality was given by G.V. Milovanović in [12] (see also [13] and [16, p. 468]). Multivariate versions of Ostrowski's inequality were also considered in [3], [7] and [11]. In this paper we give a general two-dimensional Ostrowski-Grüss inequality. For

ISSN (electronic): 1443-5756

© 2003 Victoria University. All rights reserved.

2 Nenad Ujević

that purpose, we introduce specially defined polynomials, which can be considered as harmonic or Appell-like polynomials in two dimensions. In Section 3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type inequality.

2. A GENERAL OSTROWSKI-GRÜSS INEQUALITY

Let $\Omega = [a, b] \times [a, b]$ and let $f : \Omega \to \mathbb{R}$ be a given function. Here we suppose that $f \in C^{2n}(\Omega)$. Let $P_k(s)$ and $Q_k(t)$ be harmonic or Appell-like polynomials, i.e.

(2.1)
$$P'_k(s) = P_{k-1}(s) \text{ and } Q'_k(t) = Q_{k-1}(t), \ k = 1, 2, \dots, n+1,$$

with

$$(2.2) P_0(s) = Q_0(t) = 1.$$

We also define

$$(2.3) R_k(s,t) = P_k(s)Q_k(t), k = 0, 1, 2, \dots, n+1.$$

Lemma 2.1. Let $R_k(s,t)$ be defined by (2.3). Then we have

(2.4)
$$\frac{\partial^2 R_k(s,t)}{\partial s \partial t} = R_{k-1}(s,t)$$

for $k = 1, 2, \dots, n + 1$.

Proof. From (2.1) - (2.3) it follows that

$$\frac{\partial^2 R_k(s,t)}{\partial s \partial t} = \frac{\partial}{\partial t} \left(\frac{\partial R_k(s,t)}{\partial s} \right)$$

$$= \frac{\partial}{\partial t} \left(P'_k(s) Q_k(t) \right)$$

$$= P_{k-1}(s) Q'_k(t)$$

$$= P_{k-1}(s) Q_{k-1}(t) = R_{k-1}(s,t).$$

We now define

(2.5)
$$J_k = \int_a^b \left[R_k(b,t) \frac{\partial^{2k-1} f(b,t)}{\partial s^{k-1} \partial t^k} - R_k(a,t) \frac{\partial^{2k-1} f(a,t)}{\partial s^{k-1} \partial t^k} \right] dt,$$

(2.6)
$$u_{k-1}(t) = \frac{\partial^{k-1} f(b,t)}{\partial s^{k-1}}, \ v_{k-1}(t) = \frac{\partial^{k-1} f(a,t)}{\partial s^{k-1}},$$

for $k = 1, 2, \dots, n$. We also define

(2.7)
$$J_{k,1} = \int_{a}^{b} R_{k}(b,t) \frac{\partial^{2k-1} f(b,t)}{\partial s^{k-1} \partial t^{k}} dt = P_{k}(b) \int_{a}^{b} Q_{k}(t) u_{k-1}^{(k)}(t) dt$$

and

(2.8)
$$J_{k,2} = \int_{a}^{b} R_{k}(a,t) \frac{\partial^{2k-1} f(a,t)}{\partial s^{k-1} \partial t^{k}} dt = P_{k}(a) \int_{a}^{b} Q_{k}(t) v_{k-1}^{(k)}(t) dt$$

such that

$$(2.9) J_k = J_{k,1} - J_{k,2}.$$

Lemma 2.2. Let $J_{k,1}$ be defined by (2.7). Then we have

(2.10)
$$J_{k,1} = P_k(b) \sum_{j=1}^k (-1)^{k-j} \left[Q_j(b) u_{k-1}^{(j-1)}(b) - Q_j(a) u_{k-1}^{(j-1)}(a) \right] + (-1)^k P_k(b) \int_a^b u_{k-1}(t) dt,$$

for k = 1, 2, ..., n.

Proof. We introduce the notation

$$U_k(u_{k-1}) = \int_a^b Q_k(t) u_{k-1}^{(k)}(t) dt.$$

Then we have

$$(-1)^{k} U_{k}(u_{k-1}) = (-1)^{k} \int_{a}^{b} Q_{k}(t) u_{k-1}^{(k)}(t) dt$$
$$= (-1)^{k} \left[Q_{k}(b) u_{k-1}^{(k-1)}(b) - Q_{k}(a) u_{k-1}^{(k-1)}(a) \right]$$
$$+ (-1)^{k-1} \int_{a}^{b} Q_{k-1}(t) u_{k-1}^{(k-1)}(t) dt.$$

We can write the above relation in the form

$$(-1)^{k}U_{k}(u_{k-1}) = (-1)^{k} \left[Q_{k}(b)u_{k-1}^{(k-1)}(b) - Q_{k}(a)u_{k-1}^{(k-1)}(a) \right] + (-1)^{k-1}U_{k-1}(u_{k-1}).$$

In a similar way we get

$$(-1)^{k-1}U_{k-1}(u_{k-1}) = (-1)^{k-1} \int_{a}^{b} Q_{k-1}(t)u_{k-1}^{(k-1)}(t)dt$$

$$= (-1)^{k-1} \left[Q_{k-1}(b)u_{k-1}^{(k-2)}(b) - Q_{k-1}(a)u_{k-1}^{(k-2)}(a) \right]$$

$$+ (-1)^{k-2} \int_{a}^{b} Q_{k-2}(t)u_{k-1}^{(k-2)}(t)dt$$

or

$$(-1)^{k-1}U_{k-1}(u_{k-1})$$

$$= (-1)^{k-1} \left[Q_{k-1}(b)u_{k-1}^{(k-2)}(b) - Q_{k-1}(a)u_{k-1}^{(k-2)}(a) \right] + (-1)^{k-2}U_{k-2}(u_{k-1}).$$

If we continue the above procedure then we obtain

$$(-1)^{k}U_{k}(u_{k-1})$$

$$= \sum_{j=1}^{k} (-1)^{j} \left[Q_{j}(b)u_{k-1}^{(j-1)}(b) - Q_{j}(a)u_{k-1}^{(j-1)}(a) \right] + U_{0}(u_{k-1})$$

$$= \sum_{j=1}^{k} (-1)^{j} \left[Q_{j}(b)u_{k-1}^{(j-1)}(b) - Q_{j}(a)u_{k-1}^{(j-1)}(a) \right] + \int_{a}^{b} u_{k-1}(t)dt.$$

Note now that

$$J_{k,1} = P_k(b)U_k(u_{k-1})$$

such that (2.10) holds.

4 Nenad Ujević

Lemma 2.3. Let $J_{k,2}$ be defined by (2.8). Then we have

(2.11)
$$J_{k,2} = P_k(a) \sum_{j=1}^k (-1)^{k-j} \left[Q_j(b) v_{k-1}^{(j-1)}(b) - Q_j(a) v_{k-1}^{(j-1)}(a) \right] + (-1)^k P_k(a) \int_a^b v_{k-1}(t) dt,$$

for k = 1, 2, ..., n.

Proof. The proof is almost identical to that of Lemma 2.2.

We now define

(2.12)
$$K_k = \int_a^b \left[\frac{\partial R_k(s,b)}{\partial s} \frac{\partial^{2k-2} f(s,b)}{\partial s^{k-1} \partial t^{k-1}} - \frac{\partial R_k(s,a)}{\partial s} \frac{\partial^{2k-2} f(s,a)}{\partial s^{k-1} \partial t^{k-1}} \right] ds,$$

for k = 2, ..., n,

(2.13)
$$x_{k-1}(s) = \frac{\partial^{k-1} f(s,b)}{\partial t^{k-1}}, \ y_{k-1}(s) = \frac{\partial^{k-1} f(s,a)}{\partial t^{k-1}}$$

and

(2.14)
$$K_1 = Q_1(b) \int_a^b x_0(s) ds - Q_1(a) \int_a^b y_0(s) ds.$$

We also define

(2.15)
$$K_{k,1} = \int_{a}^{b} \frac{\partial R_{k}(s,b)}{\partial s} \frac{\partial^{2k-2} f(s,b)}{\partial s^{k-1} \partial t^{k-1}} ds = Q_{k}(b) \int_{a}^{b} P_{k-1}(s) x_{k-1}^{(k-1)}(s) ds$$

and

(2.16)
$$K_{k,2} = \int_{a}^{b} \frac{\partial R_{k}(s,a)}{\partial s} \frac{\partial^{2k-2} f(s,a)}{\partial s^{k-1} \partial t^{k-1}} ds = Q_{k}(a) \int_{a}^{b} P_{k-1}(s) y_{k-1}^{(k-1)}(s) ds$$

such that

$$(2.17) K_k = K_{k,1} - K_{k,2}, k = 1, 2, \dots, n.$$

Lemma 2.4. Let $K_{k,1}$ be defined by (2.15). Then we have

(2.18)
$$K_{k,1} = Q_k(b) \sum_{j=2}^k (-1)^{k-j+1} \left[P_{j-1}(b) x_{k-1}^{(j-2)}(b) - P_{j-1}(a) x_{k-1}^{(j-2)}(a) \right] + (-1)^{k-1} Q_k(b) \int_a^b x_{k-1}(s) ds,$$

for k = 2, ..., n.

Proof. We introduce the notation

$$U_{k-1}(x_{k-1}) = \int_a^b P_{k-1}(s) x_{k-1}^{(k-1)}(s) ds.$$

Then we have

$$(-1)^{k-1}U_{k-1}(x_{k-1}) = (-1)^{k-1} \int_{a}^{b} P_{k-1}(s) x_{k-1}^{(k-1)}(s) ds$$

$$= (-1)^{k-1} \left[P_{k-1}(b) x_{k-1}^{(k-2)}(b) - P_{k-1}(a) x_{k-1}^{(k-2)}(a) \right]$$

$$+ (-1)^{k-2} \int_{a}^{b} P_{k-2}(s) x_{k-1}^{(k-2)}(s) ds.$$

We can write the above relation in the form

$$(-1)^{k-1}U_{k-1}(x_{k-1})$$

$$= (-1)^{k-1} \left[P_{k-1}(b)x_{k-1}^{(k-2)}(b) - P_{k-1}(a)x_{k-1}^{(k-2)}(a) \right] + (-1)^{k-2}U_{k-2}(x_{k-1}).$$

In a similar way we get

$$(-1)^{k-2}U_{k-2}(x_{k-1}) = (-1)^{k-2} \int_{a}^{b} P_{k-2}(s) x_{k-1}^{(k-2)}(s) ds$$

$$= (-1)^{k-2} \left[P_{k-2}(b) x_{k-1}^{(k-3)}(b) - P_{k-2}(a) x_{k-1}^{(k-3)}(a) \right]$$

$$+ (-1)^{k-3} \int_{a}^{b} P_{k-3}(s) x_{k-1}^{(k-3)}(s) ds$$

or

$$(-1)^{k-2}U_{k-2}(x_{k-1})$$

$$= (-1)^{k-2} \left[P_{k-2}(b)x_{k-1}^{(k-3)}(b) - P_{k-2}(a)x_{k-1}^{(k-3)}(a) \right] + (-1)^{k-3}U_{k-3}(x_{k-1}).$$

If we continue the above procedure then we get

$$(-1)^{k-1}U_{k-1}(x_{k-1})$$

$$= \sum_{j=2}^{k} (-1)^{j-1} \left[P_{j-1}(b) x_{k-1}^{(j-2)}(b) - P_{j-1}(a) x_{k-1}^{(j-2)}(a) \right] + U_0(x_{k-1})$$

$$= \sum_{j=2}^{k} (-1)^{j-1} \left[P_{j-1}(b) x_{k-1}^{(j-2)}(b) - P_{j-1}(a) x_{k-1}^{(j-2)}(a) \right] + \int_a^b x_{k-1}(t) dt.$$

Note now that

$$K_{k,1} = Q_k(b)U_{k-1}(x_{k-1})$$

such that (2.18) holds.

Lemma 2.5. Let $K_{k,2}$ be defined by (2.16). Then we have

(2.19)
$$K_{k,2} = Q_k(a) \sum_{j=2}^k (-1)^{k-j+1} \left[P_{j-1}(b) y_{k-1}^{(j-2)}(b) - P_{j-1}(a) y_{k-1}^{(j-2)}(a) \right] + (-1)^{k-1} Q_k(a) \int_a^b y_{k-1}(s) ds,$$

for k = 2, ..., n.

Proof. The proof is almost identical to that of Lemma 2.4.

6 NENAD UJEVIĆ

Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space and $e \in X$, ||e|| = 1. Let $\gamma, \varphi, \Gamma, \Phi$ be real numbers and $x, y \in X$ such that the conditions

(2.20)
$$\langle \Phi e - x, x - \varphi e \rangle \ge 0$$
 and $\langle \Gamma e - y, y - \gamma e \rangle \ge 0$

hold. In [5] we can find the inequality

(2.21)
$$|\langle x, y \rangle - \langle x, e \rangle \langle y, e \rangle| \le \frac{1}{4} |\Phi - \varphi| |\Gamma - \gamma|.$$

We also have

$$(2.22) |\langle x, y \rangle - \langle x, e \rangle \langle y, e \rangle| \le (||x||^2 - \langle x, e \rangle^2)^{\frac{1}{2}} (||y||^2 - \langle e, y \rangle^2)^{\frac{1}{2}}.$$

Let $X = L_2(\Omega)$ and e = 1/(b-a). If we define

(2.23)
$$T(f,g) = \frac{1}{(b-a)^2} \int_a^b \int_a^b f(t,s)g(t,s)dtds - \frac{1}{(b-a)^4} \int_a^b \int_a^b f(t,s)dtds \int_a^b \int_a^b g(t,s)dtds,$$

then from (2.20) and (2.21) we obtain the Grüss inequality in $L_2(\Omega)$,

$$|T(f,g)| \le \frac{1}{4}(\Gamma - \gamma)(\Phi - \varphi),$$

if

$$\gamma \le f(x,y) \le \Gamma, \ \varphi \le g(x,y) \le \Phi, (x,y) \in \Omega.$$

From (2.22), we have the pre-Grüss inequality

(2.25)
$$T(f,g)^{2} \le T(f,f)T(g,g).$$

We now define

(2.26)
$$I_n = \int_a^b \int_a^b R_n(s,t) \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n} ds dt$$

and

(2.27)
$$S_n = \frac{1}{(b-a)^2} \int_a^b \int_a^b R_n(s,t) ds dt \int_a^b \int_a^b \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n} ds dt.$$

Lemma 2.6. Let I_n and S_n be defined by (2.26) and (2.27), respectively. Then we have the inequality

$$(2.28) |I_n - S_n| \le \frac{M_{2n} - m_{2n}}{2} C(b - a)^2,$$

where

$$M_{2n} = \max_{(s,t)\in\Omega} \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n}, \ m_{2n} = \min_{(s,t)\in\Omega} \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n}$$

and

(2.29)
$$C = \left\{ \frac{1}{(b-a)^2} \int_a^b P_n(s)^2 ds \int_a^b Q_n(t)^2 dt - \frac{1}{(b-a)^4} \left(\int_a^b P_n(s) ds \int_a^b Q_n(t) dt \right)^2 \right\}^{\frac{1}{2}}.$$

Proof. From (2.23), (2.26) and (2.27) we see that

$$I_n - S_n = (b-a)^2 T\left(R_n(s,t), \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n}\right).$$

Then from (2.25) we get

$$|I_n - S_n| \le (b - a)^2 T \left(R_n(s, t), R_n(s, t) \right)^{\frac{1}{2}} T \left(\frac{\partial^{2n} f(s, t)}{\partial s^n \partial t^n}, \frac{\partial^{2n} f(s, t)}{\partial s^n \partial t^n} \right)^{\frac{1}{2}}.$$

From (2.24) we have

$$T\left(\frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n}, \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n}\right)^{\frac{1}{2}} \le \frac{M_{2n} - m_{2n}}{2}.$$

We also have

$$T(R_n(s,t), R_n(s,t)) = \frac{1}{(b-a)^2} \int_a^b P_n(s)^2 ds \int_a^b Q_n(t)^2 dt - \frac{1}{(b-a)^4} \left(\int_a^b P_n(s) ds \int_a^b Q_n(t) dt \right)^2.$$

From the last three relations we see that (2.28) holds.

Theorem 2.7. Let $\Omega = [a,b] \times [a,b]$ and let $f: \Omega \to \mathbb{R}$ be a given function such that $f \in C^{2n}(\Omega)$. Let the conditions of Lemma 2.6 hold. If J_k , K_k are given by (2.9), (2.17), where $J_{k,1}$, $J_{k,2}$, $K_{k,1}$, $K_{k,2}$ are given by Lemmas 2.2 – 2.5, then we have the inequality

(2.30)
$$\left| \int_{a}^{b} \int_{a}^{b} f(s,t) ds dt + \sum_{k=1}^{n} J_{k} - \sum_{k=1}^{n} K_{k} - S_{n} \right| \leq \frac{M_{2n} - m_{2n}}{2} C(b-a)^{2},$$

where

(2.31)
$$S_n = \frac{1}{(b-a)^2} \left[P_{n+1}(b) - P_{n+1}(a) \right] \left[Q_{n+1}(b) - Q_{n+1}(a) \right] \times \left[v(b,b) - v(b,a) - v(a,b) + v(a,a) \right],$$

and
$$v(s,t) = \frac{\partial^{2n-2}t(s,t)}{\partial s^{n-1}\partial t^{n-1}}$$
.

Proof. We have

$$(2.32) I_{n} = \int_{a}^{b} \int_{a}^{b} R_{n}(s,t) \frac{\partial^{2n} f(s,t)}{\partial s^{n} \partial t^{n}} ds dt$$

$$= \int_{a}^{b} dt \int_{a}^{b} R_{n}(s,t) \frac{\partial}{\partial s} \left[\frac{\partial^{2n-1} f(s,t)}{\partial s^{n-1} \partial t^{n}} \right] ds$$

$$= \int_{a}^{b} \left[R_{n}(b,t) \frac{\partial^{2n-1} f(b,t)}{\partial s^{n-1} \partial t^{n}} - R_{n}(a,t) \frac{\partial^{2n-1} f(a,t)}{\partial s^{n-1} \partial t^{n}} \right] dt$$

$$- \int_{a}^{b} \int_{a}^{b} \frac{\partial R_{n}(s,t)}{\partial s} \frac{\partial^{2n-1} f(s,t)}{\partial s^{n-1} \partial t^{n}} ds dt$$

$$= J_{n} - L_{n},$$

where

$$L_n = \int_a^b \int_a^b \frac{\partial R_n(s,t)}{\partial s} \frac{\partial^{2n-1} f(s,t)}{\partial s^{n-1} \partial t^n} ds dt.$$

8 Nenad Ujević

We also have

$$L_{n} = \int_{a}^{b} ds \int_{a}^{b} \frac{\partial R_{n}(s,t)}{\partial s} \frac{\partial}{\partial t} \left[\frac{\partial^{2n-2} f(s,t)}{\partial s^{n-1} \partial t^{n-1}} \right] dt$$

$$= \int_{a}^{b} \left[\frac{\partial R_{n}(s,b)}{\partial s} \frac{\partial^{2n-2} f(s,b)}{\partial s^{n-1} \partial t^{n-1}} - \frac{\partial R_{n}(s,a)}{\partial s} \frac{\partial^{2n-2} f(s,a)}{\partial s^{n-1} \partial t^{n-1}} \right] ds$$

$$- \int_{a}^{b} \int_{a}^{b} R_{n-1}(s,t) \frac{\partial^{2n-2} f(s,t)}{\partial s^{n-1} \partial t^{n-1}} ds dt$$

$$= K_{n} - I_{n-1}.$$

Hence, we have

$$I_n = J_n - K_n + I_{n-1}.$$

In a similar way we obtain

$$I_{n-1} = J_{n-1} - K_{n-1} + I_{n-2}$$
.

If we continue this procedure then we get

(2.33)
$$I_n = \sum_{k=1}^n J_k - \sum_{k=1}^n K_k + I_0,$$

where

$$(2.34) I_0 = \int_a^b \int_a^b f(s,t) ds dt.$$

We now consider the term

(2.35)
$$S_n = \frac{1}{(b-a)^2} \int_a^b \int_a^b R_n(s,t) ds dt \int_a^b \int_a^b \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n} ds dt.$$

We have

$$\int_{a}^{b} \int_{a}^{b} R_{n}(s,t)dsdt = \int_{a}^{b} P_{n}(s)ds \int_{a}^{b} Q_{n}(t)dt$$
$$= [P_{n+1}(b) - P_{n+1}(a)] [Q_{n+1}(b) - Q_{n+1}(a)]$$

and

$$\begin{split} \int_a^b \int_a^b \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n} ds dt \\ &= \int_a^b dt \int_a^b \frac{\partial}{\partial s} \left[\frac{\partial^{2n-1} f(s,t)}{\partial s^{n-1} \partial t^n} \right] ds \\ &= \int_a^b \left[\frac{\partial^{2n-1} f(b,t)}{\partial s^{n-1} \partial t^n} - \frac{\partial^{2n-1} f(a,t)}{\partial s^{n-1} \partial t^n} \right] dt \\ &= \frac{\partial^{2n-2} f(b,b)}{\partial s^{n-1} \partial t^{n-1}} - \frac{\partial^{2n-2} f(b,a)}{\partial s^{n-1} \partial t^{n-1}} - \frac{\partial^{2n-1} f(a,b)}{\partial s^{n-1} \partial t^{n-1}} + \frac{\partial^{2n-1} f(a,a)}{\partial s^{n-1} \partial t^{n-1}} \\ &= \left[v(b,b) - v(b,a) - v(a,b) + v(a,a) \right], \end{split}$$

Thus (2.31) holds. From (2.33) - (2.35) we see that

$$I_n - S_n = \int_a^b \int_a^b f(s,t) ds dt + \sum_{k=1}^n J_k - \sum_{k=1}^n K_k - S_n.$$

Then from Lemma 2.6 we conclude that (2.30) holds.

3. A PARTICULAR INEQUALITY

Here we use the notations introduced in Section 2. In Theorem 2.7 we proved a general inequality of Ostrowski-Grüss type. Many particular inequalities can be obtained if we choose specific harmonic or Appell-like polynomials $P_k(s)$, $Q_k(t)$ in (2.30). For example, in [8] we can find the following harmonic polynomials

$$P_k(s) = \frac{1}{k!}(s-a)^k,$$

$$P_k(s) = \frac{1}{k!}\left(s - \frac{a+b}{2}\right)^k,$$

$$P_k(s) = \frac{(b-a)^k}{k!}B_k\left(\frac{s-a}{b-a}\right),$$

$$P_k(s) = \frac{(b-a)^k}{k!}E_k\left(\frac{s-a}{b-a}\right),$$

where $B_k(s)$ and $E_k(s)$ are Bernoulli and Euler polynomials, respectively. We shall not consider all possible combinations of these polynomials. Here we choose the following combination

(3.1)
$$P_k(s) = \frac{(b-a)^k}{k!} B_k \left(\frac{s-a}{b-a}\right), \qquad Q_k(t) = \frac{(b-a)^k}{k!} B_k \left(\frac{t-a}{b-a}\right).$$

We now substitute the above polynomials in (2.10), (2.11), (2.18), (2.19) to obtain

(3.2)
$$J_{k,1} = \bar{J}_{k,1}$$

$$= \frac{(b-a)^k}{k!} B_k(1) \sum_{j=1}^k (-1)^{k-j} \frac{(b-a)^j}{j!}$$

$$\times \left[B_j(1) u_{k-1}^{(j-1)}(b) - B_j(0) u_{k-1}^{(j-1)}(a) \right] + (-1)^k B_k(1) \frac{(b-a)^k}{k!} \int_a^b u_{k-1}(t) dt,$$

(3.3)
$$J_{k,2} = \bar{J}_{k,2}$$

$$= \frac{(b-a)^k}{k!} B_k(0) \sum_{j=1}^k (-1)^{k-j} \frac{(b-a)^j}{j!} \left[B_j(1) v_{k-1}^{(j-1)}(b) - B_j(0) v_{k-1}^{(j-1)}(a) \right]$$

$$+ (-1)^k B_k(0) \frac{(b-a)^k}{k!} \int_a^b v_{k-1}(t) dt,$$

(3.4)
$$K_{k,1} = \bar{K}_{k,1}$$

$$= \frac{(b-a)^k}{k!} B_k(1) \sum_{j=2}^k (-1)^{k-j+1} \frac{(b-a)^{j-1}}{(j-1)!}$$

$$\times \left[B_{j-1}(1) x_{k-1}^{(j-2)}(b) - B_{j-1}(0) x_{k-1}^{(j-2)}(a) \right]$$

$$+ (-1)^{k-1} \frac{(b-a)^k}{k!} B_k(1) \int_a^b x_{k-1}(s) ds,$$

10 NENAD UJEVIĆ

and

(3.5)
$$K_{k,2} = \bar{K}_{k,2}$$

$$= \frac{(b-a)^k}{k!} B_k(0) \sum_{j=2}^k (-1)^{k-j+1} \frac{(b-a)^{j-1}}{(j-1)!}$$

$$\times \left[B_{j-1}(1) y_{k-1}^{(j-2)}(b) - B_{j-1}(0) y_{k-1}^{(j-2)}(a) \right]$$

$$+ (-1)^{k-1} \frac{(b-a)^k}{k!} B_k(0) \int_a^b y_{k-1}(s) ds.$$

We have

$$J_k = \bar{J}_k = \bar{J}_{k,1} - \bar{J}_{k,2}, k = 1, 2, \dots, n,$$

(3.7)
$$K_k = \bar{K}_k = \bar{K}_{k,1} - \bar{K}_{k,2}, \ k = 2, \dots, n$$

and

(3.8)
$$\bar{K}_1 = \frac{b-a}{2} \left[\int_a^b x_0(s) ds + \int_a^b y_0(s) ds \right],$$

where $\bar{J}_{k,1}, \bar{J}_{k,2}, \bar{K}_{k,1}, \bar{K}_{k,2}$ are defined by (3.2) – (3.5), respectively.

Basic properties of Bernoulli polynomials can be found in [1]. Here we emphasize the following properties:

(3.9)
$$\int_0^1 B_k(s)ds = 0, \quad k = 1, 2, \dots$$

and

(3.10)
$$\int_0^1 B_k(s)B_j(s)ds = (-1)^{k-1} \frac{k!j!}{(k+j)!} B_{k+j}, \quad k, j = 1, 2, \dots,$$

where

$$(3.11) B_k = B_k(0), k = 0, 1, 2, \dots$$

are Bernoulli numbers. We also have

$$(3.12) B_{2i+1} = 0, i = 1, 2, \dots,$$

$$(3.13) B_k(0) = B_k(1) = B_k, k = 0, 2, 3, 4, \dots,$$

and, in particular,

(3.14)
$$B_1(0) = -\frac{1}{2}, \ B_1(1) = \frac{1}{2}.$$

From (3.2) - (3.8) and (3.12) we see that

$$\bar{J}_{2i+1} = \bar{K}_{2i+1} = 0, \ i = 1, 2, \dots, n.$$

Note also that sums in (3.2) – (3.5) have only even-indexed terms and the term for j = 1 (j = 2) is non-zero.

Theorem 3.1. *Under the assumptions of Theorem 2.7 we have*

(3.16)
$$\left| \int_a^b \int_a^b f(s,t) ds dt + \sum_{k=1}^n \bar{J}_k - \sum_{k=1}^n \bar{K}_k \right| \le \frac{M_{2n} - m_{2n}}{2} \cdot \frac{|B_{2n}|}{(2n)!} (b-a)^{2n+2},$$

where B_k are Bernoulli numbers and \bar{J}_k , \bar{K}_k are given by (3.6), (3.7), respectively.

Proof. The proof follows from the proof of Theorem 2.7, since the following is valid. Let P_n and Q_n be defined by (3.1), for k = n.

Firstly, we have

$$S_n = \frac{1}{(b-a)^2} \int_a^b \int_a^b R_n(s,t) ds dt \int_a^b \int_a^b \frac{\partial^{2n} f(s,t)}{\partial s^n \partial t^n} ds dt = 0,$$

since

$$\int_{a}^{b} \int_{an}^{b} (s,t)dsdt = \int_{a}^{b} P_{n}(s)ds \int_{a}^{b} Q_{n}(t)dt$$
$$= \left(\int_{a}^{b} P_{n}(s)ds\right)^{2}$$
$$= \left[\frac{(b-a)^{n+1}}{n!} \int_{0}^{1} B_{n}(s)ds\right]^{2} = 0,$$

because of (3.9).

Secondly, we have

$$C = \left\{ \frac{1}{(b-a)^2} \int_a^b P_n(s)^2 ds \int_a^b Q_n(t)^2 dt - \frac{1}{(b-a)^4} \left(\int_a^b P_n(s) ds \int_a^b Q_n(t) dt \right)^2 \right\}^{\frac{1}{2}}$$

$$= \left[\frac{1}{(b-a)^2} \int_a^b P_n(s)^2 ds \int_a^b Q_n(t)^2 dt \right]^{\frac{1}{2}}$$

$$= \frac{1}{b-a} \int_a^b P_n(s)^2 ds$$

$$= \frac{1}{b-a} \cdot \frac{(b-a)^{2n+1}}{(n!)^2} \int_0^1 B_n(s)^2 ds$$

$$= \frac{(b-a)^{2n}}{(n!)^2} \frac{(n!)^2}{(2n)!} |B_{2n}| = \frac{|B_{2n}|}{(2n)!} (b-a)^{2n},$$

since (3.10) holds.

REFERENCES

- [1] M. ABRAMOWITZ AND I.A. STEGUN (Eds), *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965
- [2] G.A. ANASTASSIOU, Multivariate Ostrowski type inequalities, *Acta Math. Hungar.*, **76** (1997), 267–278.
- [3] G.A. ANASTASSIOU, Ostrowski type inequalities, *Proc. Amer. Math. Soc.*, **123**(12) (1995), 3775–3781.

12 NENAD UJEVIĆ

[4] X.L. CHENG, Improvement of some Ostrowski-Grüss type inequalities, *Comput. Math. Appl.*, **42** (2001), 109–114.

- [5] S.S. DRAGOMIR, A generalization of Grüss inequality in inner product spaces and applications, *J. Math. Anal. Appl.*, **237** (1999), 74–82.
- [6] S.S. DRAGOMIR AND S. WANG, An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, *Comput. Math. Appl.*, **33**(11) (1997), 16–20.
- [7] G. HANNA, P. CERONE AND J. ROUMELIOTIS, An Ostrowski type inequality in two dimensions using the three point rule, *ANZIAM J.*, **42**(E) (2000), 671–689.
- [8] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ, On new estimation of the remainder in generalized Taylor's formula, *Math. Inequal. Appl.*, **2**(3), (1999), 343–361.
- [9] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ, Improvement and further generalization of some inequalities of Ostrowski-Grüss type, *Comput. Math. Appl.*, **39** (2000), 161–175.
- [10] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ, Generalizations of weighted version of Ostrowski's inequality and some related results, *J. Inequal. Appl.*, **5** (2000), 639–666.
- [11] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ, Weighted version of multivariate Ostrowski type inequalities, *Rocky Mountain J. Math*, **31**(2) (2001), 511–538.
- [12] G.V. MILOVANOVIĆ, On some integral inequalities, *Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.*, No 498-541, (1975), 119–124.
- [13] G.V. MILOVANOVIĆ, O nekim funkcionalnim nejednakostima, *Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.*, No 599, (1977), 1–59.
- [14] G.V. MILOVANOVIĆ AND J.E. PEČARIĆ, On generalization of the inequality of A. Ostrowski and some related applications, *Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.*, No 544-576, (1976), 155-158.
- [15] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [16] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities Involving Functions and Their Integrals and Derivatives*, Kluwer Acad. Publ., Dordrecht, Boston/London, 1991.
- [17] A. OSTROWSKI, Über die Absolutabweichung einer Differentiebaren Funktion von ihren Integralmittelwert, *Comment. Math. Helv.*, **10** (1938), 226–227.
- [18] B.G. PACHPATTE, On multidimensional Grüss type inequalities, *J. Inequal. Pure Appl. Math.*, **3**(2) (2002), Article 27. [ONLINE http://jipam.vu.edu.au/v3n2/063_01.html].