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ABSTRACT. In this present investigation, we obtain some results for certain second order linear
differential subordination. We also discuss some applications of our results.
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1. INTRODUCTION

Let H denote the class of adnalytic functions inA := {z € C : |z| < 1}. For a positive
integern anda € C, let

Hla,n] := {fGH:f(z) :a—l-Zakzk (neN:= {1,2,3,...})}
and :

A(p,n) = {f eEH: f(z)=2"+ Z arz®  (n,p€ N)} :
k=n-+p
Set
AP = A<p7 1)7 A = A1~
For two functionsf, g € H, we say that the functiofi(z) is subordinateo g(z) in A and write
f=g or  f(z)=g(2),
if there exists a Schwarz functian(z) € H with
w(0) =0 and |w(z)| <1 (z€A),
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2 V. RAVICHANDRAN

such that
(1.1) f(z) = g(w(z)) (z€A).
In particular, if the functiory is univalent inA, the above subordinatiop (1.1) is equivalent to
f(0)=g(0) and f(A)C g(A).
Miller and Mocanul[2] considered treecond order linear differential subordination
A(2)2%p" (2) + B(2)2p'(2) + C(2)p(2) + D(2) < h(2),

whereA, B, C'andD are complex-valued functions defined Arandh(z) is any convex func-
tion and in particulah(z) = (1 + z)/(1 — z). In fact, they have proved the following:

Theorem 1.1(Miller and Mocanul[2, Theorem 4.1a, p.188Detn be a positive integer and
A(z) = A > 0. Suppose that the functiod(z), C(z), D(z) : A — C satisfyRB(z) > A
and

(1.2) [SC(2)]> < n[RB(2) — AJR(nB(2) — nA —2D(z)).
If p € H[1,n] and if
(1.3) R{A(2) + B(2)2p/ () + C(2)p(z) + D(2)} > 0,
then

Rp(z) > 0.

Also Miller and Mocanul[2] have proved the following:

Theorem 1.2(Miller and Mocanu([2, Theorem 4.1e, p.195)et h be convex univalent itk
with ~(0) = 0 and letA > 0. Suppose that > 4/|h/(0)| and thatB(z), C'(z) and D(z) are
analytic in A and satisfy

RB(z)>A+|C(z) — 1| = R(C(2) — 1) + k| D(2)|.
If p € H[0, 1] satisfies the differential subordination
AZ*p"(2) + B(2)zp'(2) + C(2)p(2) + D(z) < h(2)
thenp < h.
In this paper, we extend Theor¢m]1.1 by assuming
R{AZ"(2) + B(2)2p (2) + C(2)p(2) + D(2)} >, (0L <1)

and Theorem 1]2 by assuming that the functign) is convex of order. Certain results of
Karunakaran and Ponnusamy [6], Juneja and Ponnusamy [7] and Owa and Srivastava [8] are
obtained as special cases. Also we give application of our results to certain functions defined
by the familiar Ruscheweyh derivatives.

For two functionsf(z) andg(z) given by

f2)=2"+ > at, gzx)=2"+ Y b (npeN),
k=n-+p k=n+p

theHadamard productor convolutior) of f andg is defined by

(fxg)(2) =2"+ > abpz® = (g% f)(2).

k=n+p
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TheRuscheweyh derivativa f(z) of ordery + p — 1 is defined by

Q8 D)= ) (€ AG); 8 € R (e, )
or, equivalently, by
(1.5) DOFPTL f(2) 1= 2P 4 i (526; 1> ay 2~

k=p+1
(f € A(p,n); 6 € R\ (=00, —p]).
In particular, ifd = I (1 + p € N), we find from the definitior] (1]4) of (1.5) that
P dHpr—1 1
“ U a7 G
(feAlp,n); l+peN).

In our present investigation of the second order linear differential subordination, we need the
following definitions and results:

Dl+p71 f(Z)

Definition 1.1 (Miller and Mocanul[2, Definition 2.2b, p. 21]) et @) be the set of functiong
that are analytic and univalent da\ £(q), where

E(q) = {¢ € 9A : lim g(2) = oo}

and are such that(¢) # 0 for ¢ € OA\ E(q), wheredA := {z € C: |z| = 1}, A := AUIA.

Theorem 1.3(Miller and Mocanu([2, Lemma 2.2d, p. 24])etq € Q, with ¢(0) = a. Let
p(2) = a+ p,2" + - - - be analytic inA with p(z) # a andn > 1. If p(z) is not subordinate to
q(z), then there exist points, = roe’ € A and(, € A — E(q), and anm > n > 1 for which

p(Ary) C q(A),

(@) plz0) = a(o)
(1.6) (i1)  20p'(20) = mGoq'(¢o), and
(iid)  Rlzop"(20)/p'(20) + 1] = mR[z0¢"(20)/q (20) + 1],

whereA, :={z e C: |z| <r}.

Theorem 1.4(cf. Miller and Mocanul[2, Theorem 2.3i (i), p. 35]L.et2 be a simply connected
domain andy : C* x A — C satisfies the condition

Y(io, ¢, p+in; 2) &

for - € A and for realo, ¢, u, n satisfying( < —n(1 4 0*)/2 and¢ + pu < 0. Letp(z) =
14+ pp2™ + ppy1 2™ + - - be analytic inA. If

(p(z), 20'(2), 2P (2); 2) € Q,
thenRp(z) > 0.

2. DIFFERENTIAL SUBORDINATION WITH CONVEX FUNCTIONS OF ORDER «

By appealing to Theorefn 1.3, we first prove the following:
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Theorem 2.1. Leth be a convex univalent function of ordey0 < a < 1, in A with 2(0) =0
and letA > 0. Suppose that
k> 22072 [10'(0))|
and thatB(z), C(z) and D(z) are analytic inA and satisfy
1

(2.1) nRB(z) > n(l —an)A+ MHO(Z) — 1| =R(C(2) = 1)] + k| D(2)|,
where

4%(1 — 20) 1

4 — 92041 a# 92
(2.2) Bla) = X

(log )71 a= 3

If p € H|0, n] satisfies the differential subordination
(2.3) A () + B(z)p (2) + C(2)p(2) + D(2) < h(z),
thenp < h.

Proof. Our proof of Theorem 2]1 is essentially similar to Theofen 1.2 of Miller and Mocanu
[2]. Let the subordination irj (2|3) be satisfied so theb) = 0. Since

k| (0)] > 22072,
there is any, 0 < ry < 1 such that
(14 7)20—)
To
for ro < r < 1. Sinceh is convex of ordekx in A, the functionh,(z) = h(rz) is convex

of ordera in A (ro < r < 1). By settingp,(z) = p(rz) for ry < r < 1, we see that the
subordination[(2]3) becomes

(24)  w(s) = A() + Bl (z) + Crope(2) + D(r2) < hu(2)
(zeA;rg<r<l).

) < (]. + ,’,,)2(1—01)
r

— k| (0)] and 231~ < kW (0)]

Assume thap, is not subordinate té,., for somer in (ry, 1). Then by Theorerh 1|3 there exist
pointszy € A, wy € A and anm > n > 1 such that

(2.5) pr(ZO) = hr(wO)a Zop;(zo) = mwoh;(wo),
2.6) %(1+M>zmm (1+M>.
P(20) h; (wo)
Therefore we have
2.1
(2.7) R(1+ L(ZO) > ma.
mawoh’ (wy)
From Equationd (2]5)| (4.6) and (R.7), it follows that
2.1
Z()pr (ZO)

. S ) > —1).

(2.8) R (woh;(wo)) > m(ma — 1)

Sinceh,.(z) is convex of ordery or equivalently

%(1+%) >a (z€A),
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by [2, Theorem 3.3f, p.115], we have

zhi(2) <
%hr(z) > G(a) (z€A)
wheref(a) is given by Equation| (2]2) and this condition is equivalent to
h.(2) 1 1 —
— < z € A).
W) 2| S B Y
Therefore,
2.9) R [(C(rz ) — 1)M} > L IRIC(ra0) — 1] — |Crz0) — 1]}
| U wohi(wo) | T 25 ' Vo
Sinceh is convex of ordery, we have the following well-known estimate:
: |1'(0)]
> = :
W) 2 e (A= <)
By settingz = rw,, we see that
: r|n'(0)] _
(2.10) |woh, (wo)| > m (lwo| = 1).
By setting
Az2p(20)  Bl(rzo)zp.(20) pr(20) D(rz)
2.11 Vo= 0 2 4 (Crz) — 1 ,
(211) woh;.(wo) wohy.(wo) (Clrao) )woh’r(wo) woh;,(wo)
we see that
(2.12) ur(20) = hy(wo) + Vawohy (wo).
From (2.8),[(2.P),[(2.10) and (2.11), we have
RV > m(ma — DA+ mRB(rz0) + %[%(C(%) 1) = [Clrz) 1]
B (1 _}_T>2(1fo¢)
7’|h/(0)| ’D(TZO>|
> m|[(na —1)A + RB(rz)]
1
+ 25(a) [R(C(rzg) — 1) — |C(rz0) — 1|] — k| D(rz0)]
> n[(na — 1)A + RB(rz)]
— %“C(TZO) — 1| = R(C(rzo) — 1)] — k|D(rzo)| > 0,
it follows thatu,(zy) ¢ h.(A), a contradiction. Therefore, < h, for r € (rg,1). By letting
r — 17, we obtain the desired conclusipr< . O

Remark 2.2. Whena = 0,n = 1, Theorenj 21 reduces to Theorgm| 1.2 of Miller and Mocanu
[2].

From the proof of Theorefn .1, it is clear that the condifi¢d) = 0 in not necessary when
C(z) = 1 and hence the following:
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Corollary 2.3. Leth be a convex univalent function of ordey0 < o < 1,in A, h(0) = a and
let A > 0. Suppose that

k> 2207 /|1 (0))
and thatB(z) and D(z) are analytic inA with D(0) = 0 and

(2.13) n R B(z) > n(l —an)A+ k|D(z)|

forall z € A. If p € H[a,n|, p(0) = h(0), satisfies the differential subordination
(2.14) AZ?p"(2) + B(2)2p/(2) + p(2) + D(2) < h(z),

thenp < h.

By taking A = 0 andD(z) = 0 in Theorenj 2.]1, we obtain the following:

Corollary 2.4. Leth be a convex univalent function of order0 < a < 1, in A with 4(0) = 0.
Let B(z) andC'(z) be analytic functions or\ satisfying

1
RBE) 2 3

wherej(«) is as given in Theorefn 2.1. jfe H|[0, n] satisfies the subordination
B(z)zp'(z) + C(2)p(2) < h(z),

[1C(2) = 1] = R(C(2) = D],

thenp(z) < h(z).
By taking B(z) = 1, « = 0, n = 1, in Corollary[2.4, we have the following:

Corollary 2.5. Leth be a convex univalent function ik with 2(0) = 0. LetC(z) be analytic
functions onA satisfying

RC(z) > |C(2) — 1].
If the analytic functiorp(z) satisfies the subordination
2p'(2) + C(2)p(2) < h(2),
thenp(z) < h(z).

3. DIFFERENTIAL SUBORDINATION WITH CARATHEODORY FUNCTIONS OF ORDER «
By appealing to Theorefn 1.4, we now prove the following:

Theorem 3.1. Let n be a positive integer andi(z) = A > 0. Suppose that the functions
B(z),C(z),D(z) : A — C satisfyRB(z) > Aand

(31)  [SCEP<nRB(:) - 4]

x |n(RB(z) - A) — 51+_2§9fe0(z) - g%(D(z) —a)l.
If p € H[1,n] and
(3.2) R{AZ?P"(2) + B(2)2p'(2) + C(2)p(2) + D(2)} > a (a < 1),
then
Tp(z) 55++22a ‘
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Proof. Define the functionP(z) by

_PE =T here 7::5+2a
1—7 0+ 2
Then inequality[(3]2) can be written as

R{Y(P(2), 2P'(2), 22P"(2); 2)} > 0,

where
vC(z) + D(z) — «

W(r, s, t; z) = At + B(z)s + C(z)r + -

In view of Theorenj 114, it is enough to show that
R (io, ¢, p+in; 2) <0
: —n(1+02)
for all real numbers, ¢, pandn with ¢ < —5——,(+p < 0andforallz € A. Now,
Ry (io, ¢, p+in; z)

= pA+ RB(z) —oSC(2) + R [

vC(z) + D(z) — a}
1 —v

vC(z) + D(z) — a]
1=~

<(RB(z) — A) —o3C(2) + R [

< —% {n[RB(z) — Alo”® + 23C(z)o

tn[RB(z) — A] — 2R {70(2) ;F_Dv(z) - O‘} } <0,

provided [3.1) holds. This completes the proof of our Thedremn 3.1. O

Fora = 6 = 0, Theoreni 3.1 reduces to Theorem|1.1.
By taking D = 0 andC'(z) = 1 in Theoren] 3.1, we have the following:

Corollary 3.2. LetA > 0andRB(z) — A > 6 > 0. If p € H[1, n| satisfies
R{AZ""(2) + B(2)2p'(2) + p(2)} > @ (a <1)

then
no + 2«
Fop(z) > no+2
Corollary 3.3. Let\(z) and R(z) be functions defined af and
2+9
- > ().
RAN(z) >0+ i a)n%R(z) >0

If p € H|[1,n] satisfies
R{N2)2p'(2) +p(2) + R(2)} > a (a<1),

then
20+ on
Top(z) > 2+0n

A special case of Corollafy 3.3 is obtained by Owa and Srivastava [8, Lemma 2, p. 254].
The proof of the following theorem is similar and hence it is omitted.
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Theorem 3.4. Let n be a positive integer andl(z) = A > 0. Suppose that the functions
B(2),C(z), D(z) : A — C satisfyRB(z) > A and

_(5—1—204 240

(3.3) [SC(2)]* < n[RB(2) — A] |n(RB(z) — A) — RC(z) — . a?R(D(z) —a)l .
If p € H[1, n] satisfies
(3.4) R{AZY"(2) + B(2)2p' (2) + C(2)p(z) + D(2)} < a (a > 1),
then
Rp(z) < 6512;.

4. APPLICATIONS
We now give certain applications of our results obtained in Seftion 2Jand 3.

Theorem 4.1.Lety € Cwith~y # —1,—2, -3, ... and lety, & be analytic functions o\ with
d(2)P(z) #0forz € AL If

RC(2) — |C(2) — 1] > 1 —2nf(a)RB(2),
where

B(z) = % and C(Z) — ’7(13(2’) + Z‘P/(z)

¢(2) () ’
then the integral operator defined by
1 z
1)) = g | 1 000

satisfies/(f)(z) < h(z) for every functionf(z) < h(z) whereh(z) is a convex function of
order .

Proof. The result follows immediately from Corollafy 2.4. O

Theorem 4.2. Let h be a convex univalent function of ordefin A, 0 < o < 1 andh(0) = 1.
Let M, N, R be analytic inA with R(0) = 0 and

M(z)=2"+...,andN(z) =2"+....

Let
BN(:) 220
§RZN’(Z) > k|R(2)| <k: > |h'(0)|) )
If
4.1) ﬁ%(f)) +(1— 5)% + R(2) < h(2),
then ()
N(2) =< h(2).

Proof. Let the functiorp(z) be defined by

p(z) = M(2)/N(2).
Thenp(0) = 1 = A(0) and it follows that
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Also, a computation shows that the subordination in|(4.1) is equivalent to
BN (z)
p(2) ZN'(z)

The result now follows by an application of Corollary[2.3 O
Remark 4.3. Wheng = 1,a = 0, Theoreni 4.2 reduces ta [2, Theorem 4.1h, p. 199] of Miller

and Mocanu. Ifo = 0 andR(z) = 0, then Theorem 4|2 reduces to a result of Juneja and
Ponnusamy [7, Corollary 1, p. 290].

2p'(2) + R(z) < h(z).

More generally, we have the following:

Theorem 4.4.Leto > —p be any real numbery € C with R\ > 0. Let R(z) be a function
defined oM\ with R(0) = 0 andh(z) a convex function of order, 0 < o < 1, h(0) = 1. Let

g € A, satisfy
Dy z) 92(1-a)
RV Dty 2R (k> )

If f € A, satisfies

D) | D) DR
(1—)\> |:DST19EZ)):| + D(S-i—ngZ; |:D5+p—1gEZ))

rl + R(z) < h(2),

then )
DO+ ()"

Proof. Let the functiorp(z) be defined by

D(5+p—1 P ©
W) = | D]
Dotr=lg(z)
Then a computation shows that the following subordination holds:
B(2)2p(2) + p(z) + R(2) < h(z),
where

A DPg(z)
B(z) := .
=) (6 +p) D*rg(2)
The result follows by an application of Corollgry P.3. O

WhenR(z) = 0 andp = 1, the Theorerh 4]4 reduces to Juneja and Ponnusamy [7, Theorem
1, p. 289].

Theorem 4.5. Let« be a complex numbeta > 0 and§ < 1. Let M, N, R be analytic inA
with R(0) = 0 and

M(Z) I:Zn+012n+k+"'> N(Z) 322”+d12n+k—{—---
Let NG o
alN(z 2+
If
(4.2) Ria L) M) | gy > 8,

Nz TR
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then
M(z) 20+ké
"o T 2 m
Proof. Letp(z) := M(z)/N(z). Thenp(0) = 1 = h(0). It follows that
G NE M)
p(z) + N(2) P'(2) N'(2)
Then
3@@+§ﬁf%ﬂ@+3@pﬂm%%g+<—m%%%+mm
> f.
If B(z) is defined byB(z) := aN(z)/[zN’'(z)], then it follows that
2+ 0k
The result now follows by an application of Corollary[3.3 O

Remark 4.6. For R(z) = 0, 3 = 0, Theorenj 4.5 is due to Karunakaran and Ponnusamy [6,
Theorem B, p. 562].

Theorem 4.7.Letd > —p be any real numbery € C with R\ > 0. Let R(z) be a function
defined oM\ with R(0) = 0,0 < a < 1. Letg € A, satisfies

D(Hp*lg(z)
" {/\ Dorg(2)

(6 +p)(2+90)
1l -«

RR(z) > 0.

}>u(5+p)6+

If f € A, satisfies

3%{(1 ~ ) [M}MJFAD‘S“’J"(Z) [D‘”p_lf(z)]u_l +R(z)} _—

Do*r=lg(z) Dotrg(z) | DOtP1g(z)
then
D@l f(2)]" 2040
Ditp=lg(z)| — 2496 )
Proof. Let

Then a computation shows that
R{B(2)zp'(z) + p(2) + R(2)} > «,

where

D6+p—1
B(z) := A g(z)
u(0 +p) DFrg(z)
The result follows easily. O
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