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ABSTRACT. Suppose two bounded subsetsRif are given. Parametrise the Minkowski combi-
nation of these sets iy The Classical Brunn-Minkowski Theorem asserts thaf fheth power

of the volume of the convex combination is a concave functioh @& Brunn-Minkowski-style
theorem is established for another geometric domain functional.
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1. INTRODUCTION

Let Q2 be a bounded domain iR"™. Define
(1.2) I(k,00Q) = / dist(z,0Q)*du,  fork > 0.
Q

Heredist(z, ) denotes the distance of the point () to the boundary2 of 2. The integration
uses the ordinary measurel®t and is over alk € Q2. Whenn = 2 andk = 1 this functional
was introduced, in_|1], in bounds of the torsional rigidiy(2) of plane domain$). See also
[10] where the inequalities

12,00) _ P(Q) _ 128 1(2,09)

1.2 —_—
(1.2) I1(2,0B1) = P(By) — 3 I(2,0B)
are presented. Herg, is the unit disk and
B
1(2’831)_6_ o

This inequality is one of many relating domain functionals such as these:|see [9, 2, 7]. As an
example, proved in [9], we instance

(1.3) (F(Q)" < 5((% < (||§1||)2 = (\[5;1“)4
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giving bounds for the torsional rigidity in terms of the inner-mapping radjube areg(2| and
the perimetefof?|.
We next define the Minkowski sum of domains by

Qo+Ql = {Zo—i-Zl‘ 20 EQO, Z21 € Ql},

and
Q(t) = {(1 — t)ZO + t21’ 20 € Qo, z21 € Ql}, 0 <t< 1.

The classical Brunn-Minkowski Theorem in the plane is t{yaf2(¢)| is a concave function af
for0 <t¢ < 1, anditalso happens thig(¢)| is, for convex?, a linear, hence concave, function
of ¢. Given a nonnegative quasiconcave functfgn) for which, witha: > 0, f(¢)* is concave,
we say thatf is a-concave. Inl[[B] it was shown that, for convex domafnsthe torsional
rigidity satisfies a Brunn-Minkowski style theorem: specifical{f)(¢)) is 1/4-concave. Thus
inequalities[(1.8) show that the 1/4-concave functit(if)(¢)) is sandwiched between the 1/4-
concave function$2(¢)|*> and |0Q(¢)|*. In [6] it is shown that the polar moment of inertia
1.(£2(t)) about the centroid aR, for which

2] )2 L(%) ( 09 )4
1.4 L) < < :
(1-4) <‘Bl| = L(B1) T \|9B]
holds, is also 1/4-concave. (The 1/4-concavity@(¢))* has also been established by Borell.)

In this paper we show that the same 1/4-concavity of the domain functions holds for the quan-
tities in inequalities|(1]2). Our main result will be the following.

Theorem 1.1. Let K denote the set of convex domaindRifv For Q, 2, € K, I(k,0Q(t)) is
1/(n + k)-concave ir.

Our proof is an application of the Prekopa-Leindler inequality, Thegrein 2.2 below.

2. PROOFS

The proof will use two little lemmas, Theorers 2.1 2.3, and one major theorem, the
Prekopa-Leindler Theorem 2.2. None of these three results is new: the new item in this paper
is their use.

Theorem 2.1(Knothe) Let0 < ¢t < 1 and$g, €, € K. With
ze = (1 —1t)zo + tz,
we have
(2.1) dist(z, 0(t)) > (1 — t) dist (2o, 0Q20) + t dist(z1, 9Q).

Proof. Let z; € §(¢) be as above. Denote the usual Euclidean norm ith Let w, € 0€Q(t)
be a point such that
’Zt — wt] = diSt(Zt, 59(75))

Define the direction by
. Zt — Wt
|20 — wy|
Definevy, € Qq, andv; € Q; as the points on these boundaries which are on the rays, in
directionu, from z, andz; respectively. Thus

vo = 20 + |20 — vo|u, v = 21 + |21 — v1u.
Now letp be any unit vector perpendicular#o The preceding definitions give that
(wy = (1 = t)vo +tvr),p) = 0,

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 33, 4 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

BRUNN-MINKOWSKI THEOREM 3

from which, on defining
vy = (1 — t)vg + tvy we havew, = v, + nu.

for some number. Now, we do not know (or care) if; is on the boundary df(t), but we do

know thatuv, is in the closed s&®(¢). Using the convexity oD (¢) we have that, is on the ray
joining z; with w,, and between, andw,. From this,

dist(z, 0Qt)) = |20 — we| > |20 — vy,
= (1 —t)|z0 — vo| + t|z1 — v1],
> (1 —t) dist(z, 0€) + t dist(z1, 084),
as required. O

Theorem 2.2(Prekopa-Leindler)Let0 < ¢ < 1 and letf,, f1, andh be nonnegative integrable
functions onR™ satisfying

(2.2) h((1=t)a +ty) > folz)' ™" fily)",

forall x,y € R". Then

(2.3) / h(z)dx > ( fo(z) dx) i ( fi(z) dx) :
n R R™

For references to proofs, see [5].
Theorem 2.3(Homogeneity Lemma)lf F' is positive and homogeneous of degree 1,
F(sQ) =sF(2) Vs>0,Q,
and quasiconcave
(2.4) F(Q(t)) > min(F(Q(0)), F(Q21))) V0O<t <1,V €KX,
then it is concave:
FQt) > 1 =t)F(Q0))+tF(Q(1) Yo<t<l1.

Proof. See[[5]. Replac€, by Q,/F (), 1 by ©Q;/F(€;). Using the homogeneity of degree
1, and applying[(2]4), we have

QO O
P (0 0g + ) 2

_ P
F(Qo) + F() '
the last inequality orf’ becomes

F(F@ﬁighn)ZL

Finally, using the homogeneity we have
F(Qo + ) > F(Q) + F(S4)
and using homogeneity again,
F(1 =) +t) > (1 —=1t)F(Qo) +tF (),
as required. O

With

so(l —t) =
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Proof of the Main Theorein 1. Knothe’s Lemma Z2]1 and the AGM inequality give
(2.5) dist(z,, OQ(t)) > dist(zg, 0Q0) " dist(z;, 0 )¢,

and similarly for any positivé:-th power of the distance. Denote the characteristic function of
Q by xq. A standard argument, as givenin [5] for example, establishes that

Xa (1 —1)z0 + t21) > xa,(20)" "X, (21)".
So, with
h(z) = dist(z, 0Q(t)) xaw(2),
fo(z) = dist(z, 02) xq, (2),
fi(z) = dist(z, 094 ) xa, (2),

the conditions of the Prekopa-Leindler Theorem are satisfied. This give5thax(t)) is log-
concave int. Now defineF (Q(t)) := I(k,08(t))"*+*) The functionF is quasiconcave in

t (as it inherits the stronger property of logconcavity iinom 7(k, 02(t))). Sincel(k,0€(t))

is homogeneous of degree+ k, F' is homogeneous of degree 1. The Homogeneity Lemma
applied toF' yields thatl (k, 092(t)) is 1/(n + k)-concave. O
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