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ABSTRACT. A well known result due to Ankeny and Rivlin [1] states that ifp(z) =
∑n

v=0 avzv

is a polynomial of degreen satisfyingp(z) 6= 0 for |z| < 1 then forR ≥ 1

max
|z|=R

|p(z)| ≤ Rn + 1
2

max
|z|=1

|p(z)|.

It was proposed by late Professor R.P. Boas, Jr. to obtain an inequality analogous to this inequal-
ity for polynomials having no zeros in|z| < K, K > 0. In this paper, we obtain some results
in this direction, by considering polynomials of the formp(z) = a0 +

∑n
v=t avzv, 1 ≤ t ≤ n

which have no zeros in|z| < K, K ≥ 1.
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1. I NTRODUCTION AND STATEMENT OF RESULTS

Let p(z) =
∑n

v=0 avz
v be a polynomial of degreen, and let

‖p‖ = max
|z|=1

|p(z)|, M(p, R) = max
|z|=R

|p(z)|.
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For a polynomial,p(z) =
∑n

v=0 avz
v of degreen, it is well known and is a simple consequence

of the Maximum Modulus Principle (see [16] or [13, Vol. 1, p. 137]) that forR ≥ 1,

(1.1) M(p, R) ≤ Rn‖p‖.

This result is best possible with equality holding forp(z) = λzn, λ being a complex number.
Since the extremal polynomialp(z) = λzn in (1.1) has all its zeros at the origin, it should be
possible to improve upon the bound in (1.1) for polynomials not vanishing at the origin. This
fact was observed by Ankeny and Rivlin [1], who proved that if a polynomialp(z) has no zeros
in |z| < 1, then forR ≥ 1,

(1.2) M(p, R) ≤
(

Rn + 1

2

)
‖p‖.

Inequality (1.2) becomes equality forp(z) = λ + µzn, where|λ| = |µ|.
Govil [7] observed that since equality in (1.2) holds only for polynomialsp(z) = λ +

µzn, |λ| = |µ|, which satisfy

(1.3) |coefficient ofzn | = 1

2
‖p‖,

one should be able to improve upon the bound in (1.2) for polynomials not satisfying (1.3), and
in this connection he therefore proved the following refinement of (1.2).

Theorem A. If p(z) =
∑n

v=0 avz
v is a polynomial of degreen andp(z) 6= 0 in |z| < 1, then

for R ≥ 1,

(1.4) M(p, R) ≤
(

Rn + 1

2

)
‖p‖

− n

2

(
‖p‖2 − 4|an|2

‖p‖

){
(R− 1)‖p‖
‖p‖+ 2|an|

− ln

(
1 +

(R− 1)‖p‖
‖p‖+ 2|an|

)}
.

The above inequality becomes equality for the polynomialp(z) = λ + µzn, where|λ| = |µ|.

This result of Govil [7] was sharpened by Dewan and Bhat [4], which was then later gen-
eralized by Govil and Nyuydinkong [10], where they considered polynomials not vanishing in
|z| < K, K ≥ 1. Recently, Gardner, Govil and Weems [5] generalized the result of Govil and
Nyuydinkong [10], by considering polynomials of the forma0 +

∑n
v=t avz

v, 1 ≤ t ≤ n. More
specifically, the result of Gardner, Govil and Weems [5] is:

Theorem B. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then forR ≥ 1,

(1.5) M(p, R)

≤
(

Rn + Kt

1 + Kt

)
‖p‖ −

(
Rn − 1

1 + Kt

)
m− n

1 + Kt

(
(‖p‖ −m)2 − (1 + Kt)2|an|2

(‖p‖ −m)

)
×
{

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + Kt)|an|
− ln

(
1 +

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + Kt)|an|

)}
,

wherem = min
|z|=K

|p(z)|.

The result of Govil and Nyundinkong [10] is a special case of Theorem B, whent = 1. In
this paper, we prove the following generalization and sharpening of Theorem A, and thus as
well of inequality (1.2).
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RATE OF GROWTH OFPOLYNOMIALS NOT VANISHING INSIDE A CIRCLE 3

Theorem 1.1. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then forR ≥ 1,

(1.6) M(p, R)

≤
(

Rn + s0

1 + s0

)
‖p‖ −

(
Rn − 1

1 + s0

)
m− n

1 + s0

(
(‖p‖ −m)2 − (1 + s0)

2|an|2

(‖p‖ −m)

)
×
{

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|
− ln

(
1 +

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|

)}
,

wherem = min
|z|=K

|p(z)|, and

(1.7) s0 = Kt+1

t
n
· |at|
|a0|−m

Kt−1 + 1

t
n
· |at|
|a0|−m

Kt+1 + 1
.

ForK = 1, the above theorem reduces to the result of Dewan and Bhat [4, p. 131], which is a
sharpening of Theorem A. Note that by Lemma 2.7 (stated in Section 2), we haves0 ≥ Kt, and
therefore if we combine this with the fact that

(
Rn+x
1+x

)
‖p‖−

(
Rn−1
1+x

)
m is a decreasing function

of x, we obtain from the above theorem the following:

Corollary 1.2. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then forR ≥ 1,

(1.8) M(p, R) ≤
(

Rn + Kt

1 + Kt

)
‖p‖ −

(
Rn − 1

1 + Kt

)
m,

wherem = min
|z|=K

|p(z)|.

The special case of the above corollary withK = 1, andt = 1, was proved by Aziz and
Dawood [2]. If in (1.6), we divide both the sides byRn, and makeR →∞, we will get:

Corollary 1.3. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then

(1.9) |an| ≤
1

1 + s0

(
‖p‖ −m

)
,

where againm = min
|z|=K

|p(z)|.

In case one does not have knowledge ofm = min
|z|=K

|p(z)|, one could use the following result

which does not depend onm, but is a generalization and refinement of inequality (1.2). It is
easy to see that the following theorem also generalizes Theorem A.

Theorem 1.4. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then forR ≥ 1,

(1.10) M(p, R) ≤
(

Rn + s1

1 + s1

)
‖p‖ − n

1 + s1

(
‖p‖2 − (1 + s1)

2|an|2

‖p‖

)
×
{

(R− 1)‖p‖
‖p‖+ (1 + s1)|an|

− ln

(
1 +

(R− 1)‖p‖
‖p‖+ (1 + s1)|an|

)}
,

wheres1 = Kt+1 ( t
n) |at|

|a0|
Kt−1+1

( t
n) |at|

|a0|
Kt+1+1

.

If in the above theorem, we divide both sides of (1.10) byRn and makeR →∞, we will get
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Corollary 1.5. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen andp(z) 6= 0

in |z| < K, K ≥ 1, then

(1.11) |an| ≤
1

1 + s1

‖p‖.

Remark 1.6. Both Corollaries 1.2 and 1.3 generalize and sharpen the well known inequality,
obtainable by an application of Visser’s Inequality [17], that ifp(z) =

∑n
v=0 avz

v is a polyno-
mial of degreen, p(z) 6= 0 in |z| < 1 then|an| ≤ n

2
‖p‖.

Remark 1.7. Since by Lemma 2.8 (stated in Section 2), we haves1 ≥ s0, the bounds in
Corollaries 1.2 and 1.3 are not comparable, and depending on the value ofm, either one of
these corollaries may give the sharper bound.

Remark 1.8. From the results used in the proofs of Theorem B, and Theorem 1.1, it appears that
the bound obtained by Theorem 1.1 should in general be sharper than the bound obtained from
Theorem B, but we are not able to prove this. However, we produce the following two examples,
where the bounds obtained by Theorem 1.1 and Theorem 1.4 are considerably sharper than the
bounds obtained from Theorem B. Also, in Example 1.1, the bound obtained by Theorem 1.1
is quite close to the actual bound.

Example 1.1. Considerp(z) = 1000 + z2 + z3 + z4. Clearly, heret = 2 andn = 4. We
takeK = 5.4, since we find numerically thatp(z) 6= 0 for |z| < 5.4483. For this polynomial,
the bound forM(p, 2) by Theorem B comes out to be1447.503, and by Theorem 1.1, it comes
out to be1101.84, which is a significant improvement over the bound obtained from Theorem
B. Numerically, we find that for this polynomialM(p, 2) ≈ 1028, which is quite close to the
bound1101.84, that we obtained by Theorem 1.1. The bound forM(p, 2) obtained by Theorem
1.4 is1105.05, which is also quite close to the actual bound≈ 1028. However, in this case
Theorem 1.1 gives the best bound.

Example 1.2. Now, considerp(z) = 1000 + z2 − z3 − z4. Here also,t = 2 andn = 4. We
found numerically thatp(z) 6= 0 for |z| < 5.43003, and thus we takeK = 5.4. If we take
R = 3, then for this polynomial the bound forM(p, 3) obtained by Theorem B comes out to be
3479.408, while by Theorem 1.4 it comes out to be1545.3, and by Theorem 1.1 it comes out
to be1534.5, a considerable improvement. Thus again the bounds obtained from Theorem 1.1
and Theorem 1.4 are considerably smaller than the bound obtained from Theorem B, and the
bound1534.5 obtained by Theorem 1.1 is much closer to the actual boundM(p, 3) ≈ 1100.6,
than the bound3479.408, obtained from Theorem B.

2. L EMMAS

We need the following lemmas.

Lemma 2.1. Letf(z) be analytic inside and on the circle|z| = 1 and let‖f‖ = max
|z|=1

|f(z)|. If

f(0) = a, where|a| < ‖f‖, then for|z| < 1,

(2.1) |f(z)| ≤
(
‖f‖|z|+ |a|
‖f‖+ |a||z|

)
‖f‖.

This is a well-known generalization of Schwarz’s lemma (see for example [13, p. 167]).

Lemma 2.2. If p(z) =
∑n

v=0 avz
v is a polynomial of degreen, then for|z| = R ≥ 1,

(2.2) |p(z)| ≤
(
‖p‖+ R|an|
R‖p‖+ |an|

)
‖p‖Rn.
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The proof of this lemma follows easily by applying Lemma 2.1 toT (z) = znp(1
z
) and noting

that‖T‖ = ‖p‖ (see Rahman [14, Lemma 2] for details).
From Lemma 2.2, one immediately gets (see Govil [7, Lemma 3]):

Lemma 2.3. If p(z) =
∑n

v=0 avz
v is a polynomial of degreen, then for|z| = R ≥ 1,

(2.3) |p(z)| ≤ Rn

(
1− (‖p‖ − |an|)(R− 1)

(R‖p‖+ |an|)

)
‖p‖.

Lemma 2.4. If p(z) =
∑n

v=0 avz
v is a polynomial of degreen andR ≥ 1, then

(2.4)

(
1− (x− n|an|)(R− 1)

(Rx + n|an|)

)
x

is an increasing function ofx, for x > 0.

The above lemma which follows by the derivative test is also due to Govil [7, Lemma 5].

Lemma 2.5. Letpn(z) =
∏n

ν=1(1− zνz) be a polynomial of degreen not vanishing in|z| < 1

and letp′n(0) = p′′n(0) = · · · = p
(l)
n (0) = 0. If Φ(z) = {pn(z)}ε =

∑∞
n=0 bk,ε zk, whereε = 1 or

−1, then

(2.5) |bk,ε| ≤
n

k
, (l + 1 ≤ k ≤ 2l + 1)

and

(2.6) |b2l+2,1| ≤
n

2(l + 1)2
(n + l − 1), |b2l+2,−1| ≤

n

2(l + 1)2
(n + l + 1).

The above result is due to Rahman and Stankiewicz [15, Theorem2′, p. 180].

Lemma 2.6. If p(z) =
∑n

v=0 avz
v is a polynomial of degreen, p(z) 6= 0 in |z| < K then

|p(z)| > m for |z| < K, and in particular

(2.7) |a0| > m,

wherem = min|z|=K |p(z)|.

Proof. We can assume without loss of generality thatp(z) has no zeros on|z| = K, for other-
wise the result holds trivially. Sincep(z), being a polynomial, is analytic in|z| ≤ K and has no
zeros in|z| ≤ K, by the Minimum Modulus Principle,

|p(z)| ≥ m for |z| ≤ K,

which in particular implies|a0| = |p(0)| > m, which is (2.7). �

Lemma 2.7. If p(z) = a0 +
∑n

v=t avz
v, t ≥ 1 is a polynomial of degreen, p(z) 6= 0 for

|z| < K, K ≥ 1, and ifm = min|z|=K |p(z)|, then

(2.8) s0 = Kt+1

(
t
n

) |at|
|a0|−m

Kt−1 + 1(
t
n

) |at|
|a0|−m

Kt+1 + 1
≥ Kt, t ≥ 1.

Proof. The above lemma is due to Gardner, Govil and Weems [6, Lemma 3], however for
the sake of completeness we present the brief outline of its proof. Without loss of generality
we can assumea0 > 0 for otherwise we can consider the polynomialP (z) = e− arg a0p(z),
which clearly also has no zeros in|z| < K andM(P, R) = M(p, R). Since the polynomial
p(z) = a0 +

∑n
v=t avz

v 6= 0 for |z| < K, hence, by Lemma 2.6, the polynomialp(z)−m 6= 0
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6 ROBERT B. GARDNER, N.K. GOVIL , AND SRINATH R. MUSUKULA

for |z| < K, implying that the polynomialP (z) = p(Kz) − m 6= 0 for |z| < 1. If we now
apply Lemma 2.5 to the polynomialP (z)

a0−m
, which clearly satisfies its hypotheses, we get

|at|Kt

a0 −m
≤ n

t
,

which is clearly equivalent to

t

n

(
|at|Kt+1

a0 −m

)
+ 1 ≤ t

n

(
|at|Kt

a0 −m

)
+ K,

and from which (2.8) follows. �

Lemma 2.8. The function

s(x) = Kt+1

(
(t/n)(|at|/x)Kt−1 + 1

(t/n)(|at|/x)Kt+1 + 1

)
is an increasing function ofx. Since|a0| > |a0| − m, in particular this lemma implies that
s1 > s0.

Proof. The proof follows by considering the first derivative ofs(x). �

The following lemma, which is again due to Gardner, Govil and Weems [6, Lemma 10], is
of independent interest, because besides proving a generalization and refinement of the Erdös-
Lax Theorem [11], it also provides generalizations and refinements of the results of Aziz and
Dawood [2], Chan and Malik [3], Govil [8, p. 31], Govil [9, Lemma 6] and Malik [12].

Lemma 2.9. If p(z) = a0 +
∑n

v=t avz
v, t ≥ 1 is a polynomial of degreen having no zeros in

|z| < K, whereK ≥ 1, then

(2.9) M(p′, 1) ≤ n

1 + s0

(‖p‖ −m),

wherem = min|z|=K |p(z)| and

s0 = Kt+1

((
t
n

) |at|
|a0|−m

Kt−1 + 1(
t
n

) |at|
|a0|−m

Kt+1 + 1

)
.

Since in view of Lemma 2.7 and Lemma 2.8, we haves1 ≥ Kt, the following lemma which
is also due to Gardner, Govil and Weems [6, Lemma 11], provides a generalization of the
Erdös-Lax Theorem [11], and sharpens results of Chan and Malik [3], and Malik [12].

Lemma 2.10. If p(z) = a0 +
∑n

v=t avz
v, t ≥ 1, is a polynomial of degreen having no zeros in

|z| < K, whereK ≥ 1, then

(2.10) M(p′, 1) ≤ n

1 + s1

‖p‖,

wherem = min|z|=K |p(z)| and

s1 = Kt+1

((
t
n

) |at|
|a0|K

t−1 + 1(
t
n

) |at|
|a0|K

t+1 + 1

)
.

Lemma 2.11. If p(z) = a0 +
∑n

v=t avz
v, 1 ≤ t ≤ n, is a polynomial of degreen having no

zeros in|z| < K, K ≥ 1, then

(2.11) |an| ≤
1

1 + s0

(‖p‖ −m),
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and

(2.12) |an| ≤
1

1 + s1

‖p‖,

wheres0 ands1 are as defined in Theorem 1.1 and Theorem 1.4 respectively.

Proof. If p(z) =
∑n

v=0 avz
v, thenp′(z) = a1+2a2z+· · ·+nanz

n−1. Hence Cauchy’s inequality
when applied top′(z) gives

(2.13) |nan| ≤ ‖p′‖.

On the other hand, by Lemma 2.9,

(2.14) ‖p′‖ ≤ n

1 + s0

(‖p‖ −m).

Combining (2.13) and (2.14), we obtain

(2.15) |nan| ≤
n

1 + s0

(‖p‖ −m),

from which (2.11) follows. To prove (2.12), simply use Lemma 2.10 instead of Lemma 2.9 in
the above proof. �

3. PROOF OF THEOREM 1.1

To prove Theorem 1.1, first note that for eachθ, 0 ≤ θ < 2π, we have

p(Reiθ)− p(eiθ) =

∫ R

1

p′(reiθ)eiθdr.

Hence

|p(Reiθ)− p(eiθ)| ≤
∫ R

1

|p′(reiθ)|dr(3.1)

≤
∫ R

1

rn−1

(
1− (‖p′‖ − n|an|)(r − 1)

(r‖p′‖+ n|an|)

)
‖p′‖dr,

by applying Lemma 2.3 top′(z), which is a polynomial of degree(n− 1).
By Lemma 2.4, the integrand in (3.1) is an increasing function of‖p′‖, hence applying

Lemma 2.9 to (3.1), we get for0 ≤ θ < 2π,

|p(Reiθ)− p(eiθ)|(3.2)

≤
∫ R

1

rn−1

(
1−

{ n
1+s0

(‖p‖ −m)− n|an|}(r − 1)

r n
1+s0

(‖p‖ −m) + n|an|

)
n

1 + s0

(‖p‖ −m)dr

=
n

1 + s0

(‖p‖ −m)

∫ R

1

rn−1

(
1− {(‖p‖ −m)− (1 + s0)|an|}(r − 1)

r(‖p‖ −m) + (1 + s0)|an|

)
dr

=
n

1 + s0

(‖p‖ −m)

∫ R

1

rn−1dr − n

1 + s0

(
(‖p‖ −m)− (1 + s0)|an|

)
×
∫ R

1

(
rn−1(r − 1)(‖p‖ −m)

r(‖p‖ −m) + (1 + s0)|an|

)
dr.
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8 ROBERT B. GARDNER, N.K. GOVIL , AND SRINATH R. MUSUKULA

Since by (2.11) in Lemma 2.11, we have(‖p‖−m)− (1 + s0)|an| ≥ 0, we get for0 ≤ θ ≤ 2π
andR ≥ 1,

|p(Reiθ)− p(eiθ)|

≤ (Rn − 1)

1 + s0

(‖p‖ −m)− n

1 + s0

(
(‖p‖ −m)− (1 + s0)|an|

)
×
∫ R

1

(
(r − 1)(‖p‖ −m)

r(‖p‖ −m) + (1 + s0)|an|

)
dr

=
(Rn − 1)

1 + s0

(‖p‖ −m)− n

1 + s0

(
(‖p‖ −m)− (1 + s0)|an|

)
×
∫ R

1

(
1− (‖p‖ −m) + (1 + s0)|an|

r(‖p‖ −m) + (1 + s0)|an|

)
dr

=
(Rn − 1)

1 + s0

(‖p‖ −m)− n

1 + s0

(
(‖p‖ −m)− (1 + s0)|an|

)
×
{

(R− 1)−
(

(‖p‖ −m) + (1 + s0)|an|
(‖p‖ −m)

)
ln

(
R(‖p‖ −m) + (1 + s0)|an|
(‖p‖ −m) + (1 + s0)|an|

)}
=

(Rn − 1)

1 + s0

(‖p‖ −m)− n

1 + s0

(
(‖p‖ −m)− (1 + s0)|an|

)
×
(

(‖p‖ −m) + (1 + s0)|an|
(‖p‖ −m)

)
×
{(

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|

)
− ln

(
R(‖p‖ −m) + (1 + s0)|an|
(‖p‖ −m) + (1 + s0)|an|

)}
=

(Rn − 1)

1 + s0

(‖p‖ −m)− n

1 + s0

(
(‖p‖ −m)2 − (1 + s0)

2|an|2

(‖p‖ −m)

)
×
{(

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|

)
− ln

(
R(‖p‖ −m) + (1 + s0)|an|
(‖p‖ −m) + (1 + s0)|an|

)}
,

which clearly gives

M(p, R) ≤
(

Rn + s0

1 + s0

)
‖p‖ −

(
Rn − 1

1 + s0

)
m− n

1 + s0

(
(‖p‖ −m)2 − (1 + s0)

2|an|2

(‖p‖ −m)

)
×
{(

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|

)
− ln

(
1 +

(R− 1)(‖p‖ −m)

(‖p‖ −m) + (1 + s0)|an|

)}
,

and the proof of the Theorem 1.1 is complete. �
The proof of Theorem 1.4 follows along the same lines as Theorem 1.1, but by using Lemma

2.10 instead of Lemma 2.9, and (2.12) instead of (2.11). We omit the details.
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