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ABSTRACT. A well known result due to Ankeny and Rivlinl[1] states that(t) = >"""_ a, 2"
is a polynomial of degree satisfyingp(z) # 0 for |z| < 1 thenforR > 1

n

1
< .
max [p(2)] < max [p(2)]
It was proposed by late Professor R.P. Boas, Jr. to obtain an inequality analogous to this inequal-
ity for polynomials having no zeros iz| < K, K > 0. In this paper, we obtain some results

in this direction, by considering polynomials of the foprtx) = ag + > .., av2”, 1 <t <n

which have no zeros if| < K, K > 1.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Letp(z) = > _, a,z" be a polynomial of degree, and let

Ipll = max|p()l,  M(p, R) = max|p(z)|
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For a polynomialp(z) = """ a,z" of degreen, it is well known and is a simple consequence
of the Maximum Modulus Principle (see [16] or [13, Vol. 1, p. 137]) thatfor 1,

(1.1) M(p, R) < R"||p||-

This result is best possible with equality holding fde) = Az", A being a complex number.
Since the extremal polynomialz) = Az" in (1.1) has all its zeros at the origin, it should be
possible to improve upon the bound jn (1.1) for polynomials not vanishing at the origin. This
fact was observed by Ankeny and Rivlin [1], who proved that if a polynomiial has no zeros
in|z| < 1,thenforRk > 1,

(1.2) M(p R) < (R” - 1) Il

2

Inequality (1.2) becomes equality fpfz) = X + p2", where|\| = |p|.
Govil [7] observed that since equality ii (I.2) holds only for polynomials) = X +
wz", || = |u|, which satisfy

- 1
(1.3) |coefficient of2" | = 5 Ilpll,

one should be able to improve upon the boundl'in| (1.2) for polynomials not satigfying (1.3), and
in this connection he therefore proved the following refinemerjt of (1.2).

Theorem A. If p(z) = >_, a,2" is a polynomial of degree andp(z) # 0in |z| < 1, then
for R > 1,

@) )< (5 )

_ g <||p||2 MWP) {ﬁ;fﬁ;ﬂﬂ —In (1 + m> } '

The above inequality becomes equality for the polynoptial = A + 2", where|A| = ||

This result of Govil [7] was sharpened by Dewan and Bhat [4], which was then later gen-
eralized by Govil and Nyuydinkon@ [10], where they considered polynomials not vanishing in
|z| < K, K > 1. Recently, Gardner, Govil and Weems$ [5] generalized the result of Govil and
Nyuydinkong [10], by considering polynomials of the form+ >, a,z", 1 <t < n. More
specifically, the result of Gardner, Govil and Weenis [5] is:

Theorem B. If p(z) = ao + Y, a,2", 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K >1,thenforRk > 1,

(1.5) M(p,R)
< (e )= () e (M)

" (=-D(pll =m) (B = 1)(lpll =m)
{(||p||—m)+(1+Kt)|an| 1(1+(Ilpll—m)+(1+K'*)Ianl)}’

wherem = ‘Hlli% Ip(2)].

The result of Govil and Nyundinkon@ [10] is a special case of Thegrem B, wher. In
this paper, we prove the following generalization and sharpening of Thgofem A, and thus as

well of inequality [1.2).
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Theorem 1.1.1f p(z) = ag+>_._, apz’, 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K > 1,thenforRk > 1,

(1.6) M(p,R)

<(ra) - () o (M )

(R=1(pl-m) (R—1)([lp]l — m)
- {<||p||—m>+<1+sO>|an| ! (” <||p||—m>+<1+80>ran|>}’

wherem = ‘r?i% Ip(2)|, and

b, o g1y
(1 7) So = KtJrl n \a0|
) 0 t lat| Kt+1+1

lao|—m

For K = 1, the above theorem reduces to the result of Dewan and Bhat [4, p. 131], which is a
sharpening of Theorem|A. Note that by Lemmg 2.7 (stated in Se@tion 2), wehavé't, and
therefore if we combine this with the fact th@&==2) [|p|| — (£5=*) m is a decreasing function
of z, we obtain from the above theorem the following:

Corollary 1.2. If p(z) = ag+>_._, apz’, 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K >1,thenforRk > 1,

R'+ K' R"—1
. < (== -
wherem = ‘n?_lr[l{ Ip(2)].

The special case of the above corollary with= 1, andt = 1, was proved by Aziz and
Dawood [2]. If in (1.6), we divide both the sides B, and makeR — oo, we will get:

Corollary 1.3. If p(z) = ag+>__, apz”, 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K >1,then

(L.9) an] < 5 (Il = m).

where againn = |n‘111]1{ Ip(2)].

In case one does not have knowledgero |mm Ip(2)|, one could use the following result

which does not depend on, but is a generalization and refinement of inequality|(1.2). It is
easy to see that the following theorem also generalizes Thgofem A.

Theorem 1.4.1f p(z) = ag+>_._, apz’, 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K >1,thenforRk > 1,

R+ s, n (P = (1 + 50l
(1.10) M(p, R) s( )H I = 1+sl< 17| )

(B-Dlpll (R = Dllpll
g {Ilpll+(1+81)lan| 1 (1+ ||p||+(1+81)|an|)}’

lag| 1
wheres; —Kt“( )‘“S'Kt i

If in the above theorem, we divide both sides|of (1.10)tyand makeR — oo, we will get
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Corollary 1.5. If p(z) = ag+>_._, apz’, 1 <t < n,is a polynomial of degree andp(z) # 0
in|z| < K, K >1,then

1.11 <
(1.11) lanl < 375

Remark 1.6. Both Corollarieg 1.2 and 1.3 generalize and sharpen the well known inequality,

obtainable by an application of Visser’s Inequality|[17], thai(if) = > _, a,z" is a polyno-
mial of degreen, p(z) # 0in [z| < 1 then|a,| < Z||p]|.

Remark 1.7. Since by Lemma 2|8 (stated in Section 2), we haye> s, the bounds in
Corollaries 1.2 anfl 1|3 are not comparable, and depending on the vatugesther one of
these corollaries may give the sharper bound.

Remark 1.8. From the results used in the proofs of Theofem B, and Thejorgm 1.1, it appears that
the bound obtained by Theorém|L.1 should in general be sharper than the bound obtained from
Theoren B, but we are not able to prove this. However, we produce the following two examples,
where the bounds obtained by Theofenj 1.1 and Thepregm 1.4 are considerably sharper than the
bounds obtained from Theorgny B. Also, in Exanplg 1.1, the bound obtained by THeotem 1.1
is quite close to the actual bound.

Il

Example 1.1. Considerp(z) = 1000 + 2% + 23 + z%. Clearly, heret = 2 andn = 4. We
take X' = 5.4, since we find numerically that(z) # 0 for |z| < 5.4483. For this polynomial,

the bound forM (p, 2) by Theorenj B comes out to Hel47.503, and by Theorerh 11, it comes
out to bel101.84, which is a significant improvement over the bound obtained from Theorem
Bl Numerically, we find that for this polynomial/(p, 2) ~ 1028, which is quite close to the
bound1101.84, that we obtained by Theorgm 1.1. The boundX6fp, 2) obtained by Theorem
[1.4 is 1105.05, which is also quite close to the actual bousd1028. However, in this case
Theorenj 1.]1 gives the best bound.

Example 1.2. Now, considemp(z) = 1000 + 2? — 2* — 2*. Here alsof = 2 andn = 4. We

found numerically thap(z) # 0 for |z| < 5.43003, and thus we takéd = 5.4. If we take

R = 3, then for this polynomial the bound fdt (p, 3) obtained by Theorem|B comes out to be
3479.408, while by Theoren 1]4 it comes out to b&45.3, and by Theorerp 11 it comes out

to be1534.5, a considerable improvement. Thus again the bounds obtained from THeofem 1.1
and Theorem 1]4 are considerably smaller than the bound obtained from Ttejorem B, and the
bound1534.5 obtained by Theorefn 1.1 is much closer to the actual bauiig, 3) ~ 1100.6,

than the boun@479.408, obtained from Theoren|B.

2. LEMMAS
We need the following lemmas.
Lemma 2.1. Let f(z) be analytic inside and on the circle| = 1 and let|| f|| = max |f(2)]. If

|z|=1
f(0) = a, where|a| < || f||, then for|z| < 1,

< (LIELEE
@) < (PHELEE

This is a well-known generalization of Schwarz’s lemma (see for example [13, p. 167]).

Lemma 2.2.If p(z) = Y_"_, a,2" is a polynomial of degree, then for|z| = R > 1,

Ipll + Rlan
2.2) p(2)] < (— Ipll B
Rlpl+ Jan
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The proof of this lemma follows easily by applying Lem@ 2.1M) = Z”p(%) and noting
that||7'|| = ||p|| (see Rahman [14, Lemma 2] for details).
From Lemma 22, one immediately gets (see Gavil [7, Lemma 3]):

Lemma 2.3.1f p(z) = >_"_, a,2" is a polynomial of degree, then for|z| = R > 1,

(lpll — lan|) (22 — 1))
2.3 ) <R'[1-— :
@23 (o) < e (1= UL ey gy
Lemma 2.4.1f p(z) = >, a,z" is a polynomial of degree and R > 1, then
_ (z—nfay|)(R 1)
(2.4) (1 (R + njay)]) x

is an increasing function aof, for x > 0.
The above lemma which follows by the derivative test is also due to Govil [7, Lemma 5].

Lemma 2.5. Letp,(z) = [[._,(1 — z,2) be a polynomial of degree not vanishing inz| < 1

v=1
and letp/,(0) = p/(0) = --- = p(0) = 0. If ®(2) = {pn(2)}c = 32°°, bx.. 2¥, wheree = 1 or
—1, then
(2.5) bl <7, (+1<k<2+1)
and
n n
(26) |b2[+271’ S m(n + [ — 1), ‘le_A'_Q,_l’ S m(n + [ + 1)

The above result is due to Rahman and Stankiewicz [15, The2rgm180].

Lemma 2.6. If p(z) = >, a,2" is a polynomial of degree, p(z) # 0in |z] < K then
Ip(2)| > m for |z| < K, and in particular

2.7) jaol > m,
wherem = min, g [p(2)|.

Proof. We can assume without loss of generality th@t) has no zeros ofx| = K, for other-
wise the result holds trivially. Singg z), being a polynomial, is analytic ir| < K and has no
zeros in|z| < K, by the Minimum Modulus Principle,

p(2)| = mfor 2] < K,
which in particular impliegag| = [p(0)| > m, which is [2.7). O

Lemma 2.7.If p(z) = ao + >, a,z", t > 1is a polynomial of degree, p(z) # 0 for
2] < K, K > 1,and ifm = min.|—x [p(2)|, then

() w41
(D pebrer P

n/ |ag|—m

(2.8) so = K

Proof. The above lemma is due to Gardner, Govil and Weems [6, Lemma 3], however for
the sake of completeness we present the brief outline of its proof. Without loss of generality
we can assume, > 0 for otherwise we can consider the polynomf(z) = e~ *&%p(z),

which clearly also has no zeros fin] < K andM (P, R) = M(p, R). Since the polynomial

p(z) = ao+ Y, a,z" # 0for |z| < K, hence, by Lemmia 2.6, the polynomjgk) — m # 0
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for |z| < K, implying that the polynomiaP(z) = p(Kz) — m # 0 for |z] < 1. If we now

apply Lemm to the polynomigﬂ’%, which clearly satisfies its hypotheses, we get
|ag| K
ag —

3

n
< e
1
which is clearly equivalent to

f(|at|Kt“)+1 3<|at|Kt>+K7
n\ a—m n \ag—m
and from which[(2.8) follows. O

Lemma 2.8. The function
s(z) = K1 (t/n)(Ja|/z) K1 + 1
() =K <(t/n)(‘at|/x)[(t+1 T 1)

is an increasing function of. Since|ag| > |ag| — m, in particular this lemma implies that
S1 > Sp.

IN

Proof. The proof follows by considering the first derivative«fr). O

The following lemma, which is again due to Gardner, Govil and Weéms [6, Lemma 10], is
of independent interest, because besides proving a generalization and refinement of the Erdos-
Lax Theorem[[11], it also provides generalizations and refinements of the results of Aziz and
Dawood [2], Chan and Malik [3], Govil I8, p. 31], Govil[9, Lemma 6] and Malik[12].

Lemma 2.9.If p(z) = ao + >__, a,z", t > 1is a polynomial of degree having no zeros in
|z| < K, whereK > 1, then

(2.9) M@, 1) <

n
1+80

(lpll =m),
wherem = min.|—x [p(z)| and

|as] -
so = KM <(%) \aol——mKt 1+1> .

(L) lael o1 4 q

n

lao|—m

Since in view of Lemma 2|7 and Lemrha 2.8, we have> K', the following lemma which
is also due to Gardner, Govil and Weems [6, Lemma 11], provides a generalization of the
Erdos-Lax Theorem [11], and sharpens results of Chan and Malik [3], and Malik [12].

Lemma 2.10.1f p(z) = ag+ > _, ay,2", t > 1, is a polynomial of degree having no zeros in
|z| < K, whereK > 1, then

n
2.10 M@{p,1) < ——
(2.10 W) < Il

wherem = min.|—x |p(z)| and

Lemma 2.11.If p(z) = ao + Y ._, a,2”, 1 < t < n, is a polynomial of degree having no

zerosin|z| < K, K > 1, then

2.11 <
@.11) 0] <

(lpll = m),
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and

1
2.12 —
2.1 an] < 7 lpll

wheres, ands; are as defined in Theorgm 1.1 and Theofem 1.4 respectively.

Proof. If p(z) = >, a,z", thenp’(z) = a1+2az2+- - -+na,z""'. Hence Cauchy'’s inequality
when applied t/(z) gives

(2.13) Ina,| < [[P'])-
On the other hand, by Lemma 2.9,

2.14
(2.14) Il < 1+ ~(llplf = m)-
Combining [2.1B) and (2.14), we obtain
: <
(2.15) [nan| < 5 s (||p|| m),
from which [2.11) follows. To prove (2.12), S|mply use Lemma P.10 instead of Lemma 2.9 in
the above proof. O

3. PROOF OF THEOREM [1.1
To prove Theorerp 1]1, first note that for edcly < § < 27, we have

R
p(Re™) — p(e?) = / P (re®)edr.
1
Hence

31)  [p(Re) - p(e?)| < / 1§ (re™)dr

S (e T e AU
</ <1 T+ nlan) )”p”d’

by applying Lemma 2]3 tp’(z), which is a polynomial of degref — 1).
By Lemma[ 2.4, the integrand ifi (3.1) is an increasing functiorj|8f|, hence applying
Lemmd 2.9 to[(3]1), we get far < 6 < 2,

(3.2) |p(Re”) — p(e”)]

R Al = m) = nladyr - )
</ (1 2= (ol = m) + nla] >1+s("p“ e

1+so

= s (ol = m) / rnl(l_{<r|p|| ><1+50>|an|}<r_1>)dr

1+ r(llpll =m) + (1 + so) x|

R n
==l =m) [ e = = (Al = m) = (14 50l

1+ s 1+ 59
Rl 1) (Il — m)
. / <r<||p|| G 30>|an|) o

J. Inequal. Pure and Appl. Math6(2) Art. 53, 2005 http://jipam.vu.edu.au/



http://jipam.vu.edu.au/

8 ROBERTB. GARDNER, N.K. GOVIL, AND SRINATH R. MUSUKULA

Since by[(2.111) in Lemma 2.1.1, we hai@|| — m) — (1 + so)|a,| > 0, we get for0 < 6 < 27
andR > 1,

[p(Re™) — p(e”)]

< B2 ) =) = (o =) = 1+ sl
) R = 1l ) )
| (i <1+80>|an|)d
= LD ol — ) — 2 (o =) = 1+ sl
[ (1 Pl Y
(1 ETE eIk
= S ol = ) = 1 (o =) = (1 -+ sl

N ol w5 1+ s (R(pl = m) + (1 + so)las
{(R b ( ol —m) )1 <<r|pu—m>+<1+50>|an|)}

= =D o — ) — 2 (o =) = 1+ sl
(pll = m) + (1 + s0)as
( (Tl —m) >
(R-1(pl—m) Y _, (Elpl = m) + (0 + so)las
At agen) (s e )}
@ n (pll = m)? — (1 + )la P
= = = o ()

L @=0pl=m) Y (Rl = m) + (14 so)lal
{<(Hp\|—m)+(1+80)\an\) ! <(Hp|!—m)+(1+80)!an! )}
which clearly gives

R™ + s R"—1 n (lpll = m)? — (1 + s0)?|an|?

o < (552 - (15 ) i ()
L E=DUpl=m) Y (R=1)(Ipll = m)
{<(Hp\|—m)+(1+80)\an\) 1 <1+(\|pH—m)+(1+80)Ianl)}’

and the proof of the Theoregm 1.1 is complete. O

The proof of Theorerp 14 follows along the same lines as Theprgm 1.1, but by using Lemma
[2.10 instead of Lemnia 2.9, arid (2.12) instead of (2.11). We omit the details.
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