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ABSTRACT. UsingP0-simple functionals, we generalise the result from Theorem 1.1 obtained
by Professor F. Qi (F. QI, An algebraic inequality,RGMIA Res. Rep. Coll., 2(1) (1999), article
8).
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1. I NTRODUCTION

In [4] Professor Dr. F. Qi proved the following algebraic inequality

Theorem 1.1.Let b > a > 0 andδ > 0 be real numbers, then for any given positiver ∈ R, we
have

(1.1)

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

>
b

b + δ
.

The lower bound in(1.1) is the best possible.

In this paper we will present a generalization of the inequality (1.1).

2. SOME L EMMAS

It is well-known that

C[a, b] = {f : [a, b] → R; f is continuous on[a, b]},
and let

ω(f ; t) = sup{|f(x + h)− f(x)|; 0 ≤ h ≤ t, x, x + h ∈ [a, b]}.
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The least concave majorant of this modulus with respect to the variablet is given by

ω̃(f ; t) =

 sup
0≤x≤t≤y

(t− x)ω(f ; y) + (y − t)ω(f ; t)

y − x
, for 0 ≤ t ≤ b− a,

ω(f ; b− a), for t > b− a.

Let I = [a, b] be a compact interval of the real axis,S a subspace ofC(I) andA a linear
functional defined onS. The following definition was given by T. Popoviciu in [3].

Definition 2.1 ([3]). A linear functionalA defined on the subspaceS which contains all poly-
nomials is calledPn-simple forn ≥ −1 if

(i) A(en+1) 6= 0;
(ii) For everyf ∈ S there existn + 2 distinct pointst1, t2, . . . , tn+2 in [a, b] such that

A(f) = A(en+1)[t1, t2, . . . , tn+2; f ],

where[t1, t2, . . . , tn+2; f ] is the divided difference of the functionf on the pointst1, t2, . . . , tn+2,
anden+1 denotes the monomial of degreen + 1.

Lemma 2.1([2]). LetA be a linear bounded functional,A : C(I) → R. If A is P0-simple, then
for all f ∈ C(I) we have

(2.1) |A(f)| ≤ ‖A‖
2

ω̃

(
f ;

2A(e1)

‖A‖

)
.

Lemma 2.2([2]). LetA be a linear bounded functional,A : C(I) → R. If A(e1) 6= 0 and the
inequality(2.1)holds for allf ∈ C(I), thenA is P0-simple.

A functionf ∈ C(k)[a, b] is calledPn-nonconcave if the inequality

[t1, t2, . . . , tn+2; f ] ≥ 0

holds for any givenn + 2 pointst1, t2, . . . , tn+2 ∈ [a, b] .
The following result was proved by I. Raşa in [5]:

Lemma 2.3([5]). Let k be a natural number such that0 ≤ k ≤ n andA : C(k)[a, b] → R a
linear bounded functional,A 6= 0, A(ei) = 0 for i = 0, 1, . . . , n such thatA(f) ≥ 0 for every
f which belongs toC(k)[a, b] and isP0-nonconcave. ThenA is P0-simple.

In [1], S. G. Gal gave the exact formula for the usual modulus of continuity of the nonconcave
continuous functions on[a, b]. He proved the following result:

Lemma 2.4 ([1]). Let f ∈ C[a, b] be nonconcave and monotone on[a, b]. For any given
t ∈ (0, b− a) we have

(i) ω(f ; t) = f(b)− f(b− t) if f is nondecreasing on[a, b];
(ii) ω(f ; t) = f(a)− f(a + t) if f is nonincreasing on[a, b].

3. M AIN RESULTS

Let a, b, d be real numbers such thata < b < d. Consider the functionsub andu∗b defined on
[a, d] by

ub(t) =

{
1, t ∈ [a, b];

0, t ∈ (b, d],

and

u∗b(t) =

{
0, t ∈ [a, b];

1, t ∈ (b, d].
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It is clear that

(3.1) ub(t) + u∗b(t) = 1, t ∈ [a, d].

Let A be a linear positive functional defined on the subspaceS containing the functionsub

andu∗b , which satisfies

(1) 0 < A(ub) ≤ A(e0), 0 < A(u∗b) ≤ A(e0);
(2) The functionalsA1 andA2 defined byA1(f) = A(ubf) andA2(f) = A(u∗bf) are well

defined for everyf ∈ C[a, b];
(3) A(e1)A(ub)− A(e0)A(ube1) 6= 0.

Theorem 3.1.LetA be a linear positive functional which satisfies conditions 1, 2 and 3 above.
Then the functionalB : C[a, d] → R defined by

(3.2) B(f) =
A(f)

A(e0)
− A(ubf)

A(ub)

is P0-simple, and

(3.3)

∣∣∣∣ A(f)

A(e0)
− A(ubf)

A(ub)

∣∣∣∣ ≤ A(u∗b)

A(e0)
ω̃(f ; tb),

where

tb =
A(e1u

∗
b)

A(u∗b)
− A(e1ub)

A(ub)
.

Proof. In order to prove that the functionalB is P0-simple, from Lemma 2.3, it is sufficient to
verify B(f) ≥ 0 for every nondecreasing functionf on [a, d].

It is easy to see that

B(f) =
(A(fub) + A(fu∗b))A(ub)− A(fub)(A(ub) + A(u∗b))

A(e0)A(ub)

=
A(ub)A(fu∗b)− A(fub)A(u∗b)

A(e0)A(ub)
.

(3.4)

From the definitions of functionsub andu∗b andf being nodecreasing, we have

fu∗b ≥f(b)u∗b

−fub ≥− f(b)ub.
(3.5)

Substitution of inequality (3.5) into (3.4) yieldsB(f) ≥ 0 for every nondecreasing function
f ∈ C[a, d].

From the equality (3.4) we get

(3.6) ‖B‖ =
2A(u∗b)

A(e0)

and

(3.7) B(e1) =
A(ub)A(e1u

∗
b)− A(e1ub)A(u∗b)

A(e0)A(ub)
.

Since the functionalB is P0-simple, from Lemma 2.1, the inequality (3.3) follows. �

Corollary 3.1. Let f ∈ C[a, b] be nonconcave and monotone on[a, b] and A a functional
defined as in Theorem 3.1, then

(3.8)
A(f)

A(e0)
− A(ubf)

A(ub)
≤ A(u∗b)

A(e0)
(f(d)− f(d− tb))
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if f is nondecreasing on[a, d], and

(3.9) − A(f)

A(e0)
+

A(ubf)

A(ub)
≤ A(u∗b)

A(e0)
(f(a)− f(a + tb))

if f is nonincreasing on[a, d].

Proof. From Lemma 2.3 we have

(3.10) ω(f ; t) = f(d)− f(d− t)

if f is nondecreasing on[a, d], and

(3.11) ω(f ; t) = f(a)− f(a + t)

if the functionf is nonincreasing on[a, d].
The functionsf(d)− f(d− ·) andf(a)− f(a + ·) are concave on[0, d− a) if the functionf

is a convex function. Sincẽω(f ; ·) is the least concave majorant of the functionω under above
conditions, then we get̃ω(f ; ·) = ω(f ; ·).

Combining (3.10) and (3.11) with Theorem 3.1 leads to inequalities (3.8) and (3.9).�

4. APPLICATIONS

Let a, b and d be positive numbers such that0 < a < b < d. Consider the functional
A : C[a, d] → R defined by

(4.1) A(f) =

∫ d

a

w(t)f(t)dt,

wherew : (a, d) → R is a positive weight function.
It is easy to verify that the functionalA defined by (4.1) satisfies conditions in Theorem 3.1

and the functionalB can be expressed as

B(f) =

∫ d

a
w(t)f(t)dt∫ d

a
w(t)f(t)dt

−
∫ b

a
w(t)f(t)dt∫ b

a
w(t)f(t)dt

.

Then, from Theorem 3.1, we obtain

Theorem 4.1.For everyf ∈ C[a, b],

(4.2)

∣∣∣∣∣
∫ d

a
w(t)f(t)dt∫ d

a
w(t)f(t)dt

−
∫ b

a
w(t)f(t)dt∫ b

a
w(t)f(t)dt

∣∣∣∣∣ ≤
∫ d

b
w(t)dt∫ d

a
w(t)dt

ω̃(f ; tb),

where

tb =

∫ d

b
tw(t)dt∫ d

b
w(t)dt

−
∫ b

a
tw(t)dt∫ b

a
w(t)dt

.

Corollary 4.1. Let a, b andc be positive numbers such that0 < a < b < d. Then we have the
following inequalities:

(4.3) 0 <
ab

b− a

∫ b

a

f(t)

t2
dt− da

d− a

∫ d

a

f(t)

t2
dt ≤ d− b

d− a
· a

b
(f(a)− f(a + tb))

for every convex and nonincreasing functionf on [a, d], where

tb =
bd ln d

b

d− b
−

ab ln b
a

b− a
.

Proof. Takingw(t) = 1
t2

, t ∈ [a, d] in Theorem 4.1 produces inequality (4.3). �
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Remark1. Lettingf(t) = 1
tr

, r > 0 in inequality (4.3) gives us

(4.4)
br+1 − ar+1

dr+1 − ar+1
· d− a

b− a
>

br

dr

and

(4.5)
br+1 − ar+1

dr+1 − ar+1
· d− a

b− a
<

br

dr
+ (r + 1)(d− b)

(
b

a + tb

)r
(a + tb)

r − ar

dr+1 − ar+1
· a

b
.

If we letd = b+δ in inequality (4.4), inequality (1.1) follows. Thus Theorem 1.1 by Professor
Dr. F. Qi in [4] is generalized.
Remark2. We can obtain some discrete inequalities if we select the functionalA of the form

A(f) =
n+m∑
k=1

λkf(xk),

wherexk, k = 1, 2, . . . , n + m, aren + m distinct points such that

x1 < x2 < · · · < xn < xn+1 < · · · < xn+m,

andλk, k = 1, 2, . . . , n + m, aren + m positive numbers.
Choose the pointb = xn, then from Theorem 3.1, we obtain the discrete analogue of Theorem

4.1: ∣∣∣∣∣
∑n+m

k=1 λkf(xk)∑n+m
k=1 λk

−
∑n+m

k=n+1 λkf(xk)∑n+m
k=n+1 λk

∣∣∣∣∣ ≤
∑n+m

k=n+1 λk∑n+m
k=1 λk

ω̃(f ; tb),

where

tb =

∑n+m
k=n+1 λkxk∑n+m

k=n+1 λk

−
∑n

k=1 λkxk∑n+m
k=n+1 λk

.

REFERENCES

[1] S.G. GAL, Calculus of the modulus of continuity for nonconcave functions and applications,Cal-
colo, 27(3-4) (1990), 195–202.

[2] I. GAVREA, Preservation of Lipschitz constants by linear transformations and global smoothness
preservation, submitted.

[3] T. POPOVICIU, Sur le reste dans certains formules lineaires d’approximation de l’analyse,Mathe-
matica, Cluj, 1(24) (1959), 95–142.

[4] F. QI, An algebraic inequality,RGMIA Res. Rep. Coll., 2(1) (1999), article 8. [ONLINE] Available
online athttp://rgmia.vu.edu.au/v2n1.html .
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