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Abstract

In this paper, we investigate the growth of solutions of the differential equation
FO f Ay (2) FE D Ay (2) £+ Ao (2) £ = Fwhere g (2),..., Ay (2),
F(z)= 0 are entire functions, and we obtain general estimates of the hyper-
exponent of convergence of distinct zeros and the hyper-order of solutions for
the above equation.

2000 Mathematics Subject Classification: 34M10, 30D35.
Key words: Differential equations, Hyper-order, Hyper-exponent of convergence of
distinct zeros, Wiman-Valiron theory.
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In this paper, we will use the standard notations of the Nevanlinna value dis-
tribution theory (seed]). In addition, we use the notatiors(f) andu (f) to
denote respectively the order and the lower order of growth(ef). Recalling

the following definitions of hyper-order and hyper-exponent of convergence of
distinct zeros.

Definition 1.1. ([3] —[6], [ 17]). Let f be an entire function. Then the hyper-
ordero, (f)of f (z) is defined by Growth Of Solutions Of Certain

Non-Homogeneous Linear
loglogT'
11 on(f) = Tmeele () o

Differential Equations With
logloglog M (r, f) Entire Coefficients
r—+00 log r T—+00 10g r

Benharrat Belaidi

whereT (r, f) is the Nevanlinna characteristic function ¢f(see []), and

M (r, f) = max,— | f (2)] . Title Page
Definition 1.2. ([5]). Let f be an entire function. Then the hyper-exponent of Contents
convergence of distinct zeros pf-) is defined by pp b
_ __log log N <fr, %) < 4
(1.2) X (f) = TEIJPOO log T ; Go Back
o Close
where N (r, %) is the counting function of distinct zeros ptz) in {|z| < r}. Quit
. . o +00
We define the linear measure of a $&tC [0, +-oo[ by m () = [, +o§§£?)gt Page 3 of 21

and the logarithmic measure of a sBtC [1, +oo[ by im (F) = [/ ==,
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where yy is the characteristic function of a séf. The upper and the lower

densities of” are defined by

E
(1.3) JonsE = Tm END.r])
r—-+00 r
densE — Tim MEN107])
r—-+00 r .

The upper and the lower logarithmic densitiesfoare defined by

(1.4) log dens (F) — T o EO L)

r—+400 log r

Im(FnNl
logdens (F) = lim M
EE— —— log r

In the study of the solutions of complex differential equations, the growth
of a solution is a very important property. Recently, Z. X. Chen and C. C.
Yang have investigated the growth of solutions of the non-homogeneous linear

differential equation of second order
(1.5) fHaGE) f +A @) f=F

and have obtained the following two results:

Theorem A. [5, p. 276]. LetE be a set of complex numbers satisfyilags{|z| :
z € B} > 0,and let4, (z), A; () be entire functions, with (A,) < o (A) =
o < +o0o such that for a real constartt' (> 0) and for any giverz > 0,

(1.6) A1 ()] < exp (0(1)]2777)
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and
(1.7) Ao (2)] = exp (1+0(1)) C1277)

asz — oo for z € F, and letF' # 0 be an entire function withr (F') < +oo.
Then every entire solutiofi(z) of the equation.5) satisfies\s (f) = oo (f) =
o, with at most one exceptional solutigin satisfyingo (fy) < o.

Theorem B. [5, p. 276]. LetA, (z), Ay (z) % 0 be entire functions such that
o (Ap) < o (A1) < 3 (or Ay istranscendentaly (A;) = 0, Ay is a polynomial),
and letF = 0 be an entire function. Consider a solutigrof the equation.5),
we have

() If o(F) < o(A;) (or F is a polynomial when4; is transcendental,
o (A1) = 0, Ay is a polynomial), then every entire solutig(z) of (1.5)
satisfies\y (f) = o2 (f) = 0 (A1),

(i) If o (A1) < o (F) < +oo, then every entire solutioffi (z) of (1.5 satis-
fiesy (f) = o9 (f) = o (A;), with at most one exceptional solutigh
satisfyingo (fy) < o (4;).

Fork > 2, we consider the non-homogeneous linear differential equation
1.8) P4 () f Vb A () f + A (2) f = F,

whereA, (z),..., Ax_1 (2) andF (z)# 0 are entire functions. Itis well-known
that all solutions of equatiori(8) are entire functions
Recently, the concepts of hyper-orde} f [6] and iterated order![]] were
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differential equations. The main purposes of this paper are to investigate the
hyper-exponent of convergence of distinct zeros and the hyper-order of infinite
order solutions for the above equation. We will prove the following two theo-
rems:

Theorem 1.1. Let E be a set of complex numbers satisfyifigis{|z| : z €
E} > 0,and letA4 (z),..., Ax_1(z) be entire functions, witmax{o (4;) :
j=1,...,k} <0o(Ay) = o < +oo such that for real constans < g < «
and for any giverz > 0,

Growth Of Solutions Of Certain
o—e ) Non-Homogeneous Linear
(2.9) |Aj (2)| < exp (ﬁ H ) (j=1,...,k—1) Differential Equations With

Entire Coefficients

and Benharrat Belaidi
(1.10) Ao ()] > exp (a|2|77%) |
Title Page
asz — oo for z € E, and letF'# 0 be an entire function witlr (F') < +oc. Contents
Then every entire solutiofi(z) of the equation.8) satisfies\, (f) = a5 (f) =
o, with at most one exceptional solutigip satisfyingo (fo) < o. A 4
| >

Theorem1.2.Let Ay (2), ..., Ax—1 (z) be entire functions withl, (=)= 0 such
thatmax{o (4;) : 5 =0,2,...,k—1} < o (A1) < 5 (or A, is transcendental, Go Back
o(A)) = 0, Ay, Ay, ..., Ax_, are polynomials), and lef’ # 0 be an entire

function. Conside a solutiofi of the equation.8), we have Close
Quit
(i) If o(F) < o(A;) (or F is a polynomial when4; is transcendental, Page 6 of 21

o(A)) =0, Ay, Ay, ..., Ay are polynomials), then every entire solu-
tion f (z) of (1.8) satisfies\, (f) = o2 (f) = o (4}).
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(i) If o (A1) < o (F) < 400, then every entire solutioffi () of (1.8) satis-
fies Ao (f) f) = o (A;), with at most one exceptional solutig

= 02 (
satisfyingo (fy) < o (A4;).
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Our proofs depend mainly upon the following lemmas.

Lemma 2.1.([2]). Let E be a set of complex numbers satisfyilgs {|2| : z €
E} > 0,and letA4, (z),..., Ax_1(2) be entire functions, witmax{o (4;) :
j=1,...,k} <o (Ay) = o < 400 such that for some real constarit< g <
« and for any giverz > 0,

2.1) 14;(2)] < exp (BIa7) (j=1,00, k= 1)
and
(2.2) |Ag (2)] > exp (a]2]77%)

asz — oo for z € E. Then every entire solutiofi 0 of the equation
(2.3) FO+ A () P+ b A2 f + A (2) f=0

satisfiess (f) = +ooc andoy (f) = o (Ap) .

Lemma 2.2. ([ 7]). Let f (z) be a nontrivial entire function, and let > 1 and
e > 0 be given constants. Then there exist a constat 0 and a setE C
[0, +00) having finite linear measure such that for allsatisfying|z| = r ¢
E,we have

2.4) \f < [T (ar, f)r*logT (ar, NI (j € N).

0 (2)
£

2)
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Lemma 2.3. ([7]). Let f(z) be a transcendental meromorphic function, and
let « > 1 be a given constant. Then there exists alset (1, +oo) of finite
logarithmic measure and a constaft> 0 that depends only oa and (m, n)

(m, n positive integers withn. < n) such that for allz satisfying|z| = r ¢
[0,1] U E, we have

n—m

(2.5) (log® r)log T (ar, f)

f™(2) T (ar, f)
J V<« T d
= 2[5
Lemma 2.4. ([5]). Let f(z) = > 2, a,2" be an entire function of infinite
order with the hyper-ordes, (f) = o, p (r) be the maximum term, ije(r) =
max{|a,|r™";n =0,1,...} andlety; (r) be the central index of, i.evy (r) =
max{m, p(r) = |a,|r™}. Then

(2.6) Tm loglog vy (r)

logr -

r—+400
Lemma 2.5. (Wiman-Valiron, P, 11]). Let f(z) be a transcendental entire
function and let be a point with|z| = r at which|f (z)| = M (r, f). Then for
all |z| outside a set’ of r of finite logarithmic measure, we have

f9(2) (Vf (r)
2. =

S C R
Lemma 2.6. ([1]). Let f (2) be an entire function of order (f) = o < %, and
denoteA (r) = inf|, =, log |f (2)[, B (r) = sup,_, log|f (2)| . If o < < 1,
then

(2.8)

)j (I1+0(1)) (j isanintegery ¢ F).

logdens{r: A(r) > (cosma) B (r)} >1— g.
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Lemma 2.7. ([7]). Let f (=) be an entire function with. (f) = ¢ < 3 and
u<o(f)=o. If,u§5<m'1n(a,%) andi < a < %,then

(2.9) logdens {r: A(r) > (cosma) B(r) > 1"} > C(0,6,q),

whereC (o, 6, ) is a positive constant depending only @ anda.

Lemma 2.8. Suppose thatl, (z), ..., Ax_1 (2) are entire functions such that
Ap(2)#0and

1
(2.10) max {0 (4,) :j:0,2,...,]€—1}<0'(141)<§.

Then every transcendental solutiget 0 of (2.3) is of infinite order.

Proof. Using the same argument as in the proof of Theorem 4,ip.[222], we
conclude that (f) = +oc. O
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1.1

We affirm that (.8) can only possess at most one exceptional solufjcsuch
that o (fy) < o. In fact, if f* is a second solution witlr (f*) < o, then

o(fo— f*) < o.But fy — f*is a solution of the corresponding homogeneous

equation 2.3) of (1.8). This contradicts Lemma.1l We assume that is a
solution of (L.8) with o(f) = 400 and fi,..., fx arek entire solutions of
the corresponding homogeneous equatibf)( Then by Lemma.1, we have
o2 (fj) = 0(Ay) = o (j=1,..., k). By variation of parametersf can be
expressed in the form

(3.1) f(2)=Bi(2) fi(2) +-- + B (2) fi (2),
whereB; (z), ..., B (z) are determined by

By (2) fu(2) + -+ + By (2) fi (2) = 0

By (2) fi(2) + -+ By (2) fr,(2) = 0
(3.2) Bi(2)fi )+ 4+ B () fy (2) = F.
Noting that the WronskiaV (f1, fo, ..., fx) is a differential polynomial in
fi, fa, . .., fr With constant coefficients, it easy to deduce thatil) < o, (f;) =
o (Ag) = o. Set

(@)
fi,oo s 0000 f
RN
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whereg; are differential polynomials if;, f5, . . ., fi with constant coefficients.

So

/

(3.4) 02(9i) < 02(f;) =0(Ao), B; =

SIS
~

and
(35) 02 (B;) =02 (B;) < max (02 (F), 0(A0)) = (A) (i=1,....k),
becauser, (F) = 0 (o (F) < +o0) . Then from @.1) and @.5), we get
(3.6) o2 (f) < max (02 (f;), 02 (Bi)) = 0 (Ao)-

Now from (1.8), it follows that

f(k—l)
f

Then by Lemm&.2, there exists a seE; C [0, +o0) with a finite linear mea-
sure such that for alt satisfying|z| = r ¢ E;, we have

‘ £ (2)
f(2)

Also, by the hypothesis of Theoreinl, there exists a sdf, with dens{|z| :
z € FE»} > 0 such that for alk satisfying z € F,, we have

(3.9) |Aj (2)] <exp (Bl2]7°) (j=1,..., k—1)

B7) 1A ()] < \%

+|Ak_1(z)]' +---+]A1(z)|’f7‘+‘§‘.

(3.8) <r[TEn O G=1,..., k).
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and

(3.10) Ao (2)] = exp (a|2]777)

asz — oo. Sinceo (f) = +oo, then for a given arbitrary large > o (F'),
(3.11) M (r, f) = exp (1)

holds for sufficiently large-. On the other hand, for a givenwith 0 < ¢ <
p—o (F), we have

(3.12) |F ()] < exp (r”(F)JrE) ,

F(z)
’ f(z)
where|f (z)| = M (r, f) and|z| = r. Hence from 8.7) — (3.10 and @.12), it
follows that for allz satisfying z € Es, |z| =r ¢ Eyand|f (z)| = M (r, f)

o(F)+e

<exp (r — 1) =0 (r — +00),

(3.13)  exp(a]z|77)
< P2 [T 212, A [T+ (k= 1) exp (B12]777)] +0(1)

asz — oo. Thus there exists a sét C [0, +oo) with a positive upper density

such that
(3.14) exp (ar?™%) < drexp (8r7°) [T (2r, I

asr — +ocin E, whered (> 0) is some constant. Therefore

(3.15)
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Sincee is arbitrary, then by3.15 we geto, (f) > o (Ap) = o. This and the
fact thato, (f) < oyield o, (f) = 0 (Ay) = 0.

By (1.9), it is easy to see that if has a zero at, of ordera (> k), thenF’
must have a zero at, of ordera — k. Hence,

1 _ 1 1
340 n(rg)<en(ng) volrg)

and

1 — 1 1
(3.17) N (7“, }) <kN <r, ?) + N (r,F> )

Now (1.8) can be rewritten as

1 1 f) fU=1) f
(3.18) ?—F(TnLAk_l 7 +--~+A17+A0).

By (3.18, we have

(1) 5 ()

)—l—Zm (r, Ay j)+m(fr %>+O( ).

By (3.17) and @3.19, we get for|z| = r outside a sek’; of finite linear measure,

S

gkN( ) ZTTAkJ

+ T (r, F) + O (log (rT (7, f))) -

(3.20) T(rf)=T (r, 1) +0(1)
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For sufficiently large-, we have

(3.21) O (logr +logT (r, f)) < %T(r, f)
(322) T (7"7 AO) 4+ T (T, Akfl) < Lrote
(3.23) T (7~7 F) < ro(F)te.

Thus, by 8.20 - (3.23, we have

—( 1
(3.24) T(r,f)<2kN (r, ?) + 2k 1ot 4 2r9 )Y (|2 = 1 ¢ E).

Hence for anyf with o5 (f) = o, by (3.24), we haver; (f) < X2 (f). There-
fore, Ao (f) = 02 (f) = 0.
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1.2

Assume thaf (z) is an entire solution ofl(.8). For case (i), we assurag A;) >
0 (wheno (A;) = 0, Theoreml.2 clearly holds). By {.8) we get

(k) (k—1) "
P R R
(k) (k=1) "
et b Ry Al 4

By Lemma2.3, we see that there exists a et C (1, +oo) with finite loga-
rithmic measure such that for allsatisfying |z| = r ¢ [0,1] U E4, we have

(4.2) ‘f;)é'z)) <BriT@r A GG=2,..., k).
Now setb = max{o (4;):j =0, 2,..., k—1; o(F)}, and we choose real

numbersy, 5 such that

(4.3) b<a<f<o(4).
Then for sufficiently large, we have

(4.4) A4 () < exp () (j=0,2,....k—1),

(4.5) |F ()] <exp(r®).
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By Lemma2.6 (if u(A;) = o (Ay)) or Lemma2.7 (if 1 (A;) < o (A;)) there
exists a subsdf; C (1, +o0) with logarithmic measurén (E;5) = oo such that
for all z satisfying|z| = r € E;5, we have

(4.6) | Ay (2)] > exp (7).

SinceM (r, f) > 1 for sufficiently larger, we have by 4.5)

£ (2)]
4.7 <exp(r).
(4.7) M) S p(r)
On the other hand, by Lemnia5, there exists a sets C (1, +oo) of finite
logarithmic measure such th& {) holds for some point satisfying|z| = r ¢
[0,1] U Eg and|f (z)] = M (r, f) . By (2.7), we get

’f Ly (r)| 1
2 z 2r
or
1|y,
(4.8) ) < 2r.

Now by (4.1), (4.2), (4.4), and ¢.6) — (4.8), we get
exp (r) < Lr [T (2r, AIF 2exp (r*) 2r

for |z| = r € E5\([0,1]]UE,U Eg) and|f (2)] = M (r, f), whereL (> 0)
is some constant. From this and sin¢és arbitrary, we get (f) = +oo and
o2 (f) = o (A1).
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On the other hand, for any givern> 0, if r is sufficiently large, we have

(4.9) |A; (2)] < exp (r”(Al)%) (j=0,1,..., k—1),

(4.10) |F'(2)] <exp (7’0<A1)+5) :
SinceM (r, f) > 1 for sufficiently larger, we have by 4.10

£ (2)]
M (r, f)
Substituting 2.7), (4.9) and @.17) into (1.8), we obtain

(4.11) < exp (r“(Al)JrE) )

(4.12) (”f (T))k 11+ 0(1)] < exp (r7A0+) (”f—m)“ 11+ 0(1)|

2] ||

Fexp (747 (D) o)+

+exp (r74)*) (Vﬁ (,T)> 1+ 0(1)] + 2exp (r7A0*)
z

wherez satisfiedz| = r ¢ [0,1]U Eg and|f (z)| = M (r, f). By (4.12), we get

— logl
(4.13) - logloguy (1)
r—+00 log r

<o(A))+e.
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Sincee is arbitrary, by 4.13 and Lemma2.4 we haveo; (f) < o (A;). This
and the fact that, (f) > o (Ay) yield oy (f) = o (Ay).

By a similar argument to that used in the proof of Theorei) we can get
A (f) =02(f) =0 (A1).

Finally, case (ii) can also be obtained by using Lentiréieand an argument
similar to that in the proof of Theorem L
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