LOCAL ESTIMATES FOR JACOBI POLYNOMIALS
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It is shown that ifa, 8 > —%, then the orthonormal Jacobi polynomi@lfé”ﬁ)
fulfill the local estimate

o) < ot
T VI e ) (VI )

forallt € U,(x) and eachx € [—1, 1], whereU, (z) are subintervals df-1, 1]
defined byU,, (z) = [ — 222 4 22 1A[1 1] forn € Nandz € [~1, 1]
with ¢, (z) = V1 — 2% + L. Applications of the local estimate are given at the
end of the paper.
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1. Introduction

Let w @ (z) = (1 — 2)*(1 + 2)?, = € [-1,1], be a Jacobi weight with, 3 >
—1. Letp,(x) = pi"P(z) = 4\Pam 4+ n € Ny, denote the uniqudacobi
polynomialsof precise degree, with leading coefﬁcients/%""m > 0, fulfilling the
orthonormal conditiory, p,,()p,, (2)w(®? () dz = 8, m, n,m € N,

This paper is concerned with local estimates of Jacobi polynomials by means
of modified Jacobi weights. By thmodified Jacobi weightere understand the
functions

26

(1.1) w™?(z) = <\/1 —x—i—%) ) (\/1+x+%> , x€[-1,1], neN.

We observe that all modified Jacobi Weigm§’ﬁ) are finite and positive. This
is in contrast to the fact that the Jacobi weight-®) may have singularities and
roots in+1, depending on whether and 3 are negative or positive. The Jacobi
polynomials can be estimated by means of modified Jacobi weights as follows (see
[3] and Theoren?.1 below):

() < ©

ow|

a 1
w£2+ B +4)($)

N

forallz € [-1,1]. If a, 3 > —%, then we will show that this estimate can be further
extended, namely

—_

()] < C

(SIS

(5+
W2

forall ¢ € U,(z) and eachr € [—1,1], whereU,(x) are subintervals of—1, 1]

)

.

()
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defined by

(1.2) Un(z) = {t e[-1,1] ] It — | < %T@}
- {x — “D"éx),a: + 90”7517)1 N[—1,1]

forn € Nandz € [—1, 1] with
1
(1.3) o) =vV1—122+ -

ThusU,(z) i Un(x)] = O(1/n). In our case of
Jacobi weights oft-1, 1] we need intervals arounﬂwnh radlus“”"( *) instead oft.

In this case the radius varies together witand becomes smalleriftends tol or
—1.
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2. Theorems

The following theorem provides a useful local estimate of the orthonormal Jacobi

polynomials by means of the modified weights. The estimate can also be found
in the paper 3] by Lubinsky and Totik. Here we will give an explicit proof. The
proof is essentially based on an estimate taken from Szggo |

Theorem 2.1.Leta, 8 > —1 andn € N. Then

(2.1) PP (z)] < C

forall x € [—1, 1] with a positive constar@ = C(«, 3) being independent of and
xI.

Proof. First letz < [0,1], and lett € [0, 5] such thatr = cost. Moreover, let
P, = P = (B3P (2), n € N, be the polynomials normalized by the
factor (b2, namelyP*? = (n{*):p{*?(2), as can be found in Szegd, [

eq. (4.3.4)]. According to Szegd’s book [Theorem 7.32.2] the estimate

=l

ne, ifo<t<

3o

3

(2.2) |P*®)(cost)| < C o

tretapTr e <t <2
is valid, wherec andC' are fixed positive constants being independent ahdz.
We substitute¢ = arccosz € [0, 5] and P () = (b)Y 2pi) (x) in (2.2) and

obtain, using(hﬁ{”’ﬁ))*% < C - n2 (resulting from {, eq. (4.3.4))),

1 .
neta, if 0 < arccosz <

Slo

(2.3) i ()] < Gy {

1 .
(arccos z)~(@F2) if € <arccosx <
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with C; = Ci(a, ) > 0 independent of andz. Below we will make use of the
estimates

s T [1—=x s t
—V1l-—r=— = —=sin =
2 V2 2 V2 2
2t
(2.4) > T (2.2 ) =t = arccosz ‘ _
\/§ T 2 Estimates for Jacobi
Polynomials
and Michael Felten
1 ’ " vol. 8, iss. 1, art. 3, 2007
(2.5) VoVl —z = ;x:2sin§§2-§:t:arccosx.
Title Page
The cases-1 < a < —% anda > —% are considered separately in the following.
Contents
Case—1 < a < —1: Inthiscaseitfollows that (o + §) > 0. If 0 < arccosz <
< then « 4
< >
2.3 . 1 —(a+3) 1 —(a+3)
|p7(1a’ﬁ) (Jﬁ)’ < Cin*f2 =0 <ﬁ) < (\/E—F ﬁ) . Page 6 of 14
Go Back
If = <arccosx < 7, then
Full Screen
2.3 1 29 1
‘pﬁla”g)(a:)} < (4 (arccos x)f(aJr?) < Cy(V1— x)f(‘”?) Close
1\ ~(e+3) journal of inequalities
< Oy (\/1 —x+ —> . in pure and applied
n mathematics
Casea > —1: In this case we obtair (o + 1) < 0. If 0 < arccos < <, then 1esn AHETeTSe
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from (2.5) we obtain< > /24/1 — z and hence

(2.3 —(a+i
n n

n

1 —(a+3)
SCg (\/1—1’+—> .
n
If £ <arccosz < 7,then

23 o1 —(a+3
’pgfxﬂ)(@‘ < () (arccos x) (e+2) — ¢, (arccos z + arccos ) (o+4)
=

(29

< Cs (ﬂ+%)_(a+é).

With both previous cases we have proved

PP (2)] < Cola, B) (m+%)_<a+5) | <m+l)—(ﬂ+;)

n

forallz € [0,1],n € Nanda, 3 > —1. Sincep{™” (z) = (=1)"p* (—z), we
obtain

[P (2)] < Co(8, ) (¢1+—x+ %)‘(‘”3) | <m+%)—(a+;)

forallz € [-1,0), n € Nanda, 5 > —1. This furnishes the validity of( 1). n
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Estimate £.1) of Theorem2.1 cannot hold true fon = 0 since the modified
weightw,, is not defined for = 0. However, ifn = 0, then

(2.6) ‘pé“’m (a:)\ < C(a, )

sincepé‘“’ﬁ) (x) is a constant and’; («, 5) < w, )(x) < Cy(av, B) with posi-

tive constants”; (o, 3) andCy(a, ).
Next, we will see that the local estimate of Theorgmcan be further extended.

We will show that{p{*” (x)‘ in (2.1) can be replaced b‘;@ﬁf“’ﬁ) ()|, whenevet is not

too far away fromz, namely ift is in the intervall,, (z) = [x — 2alD) gy 2@y

[—1,1]. However, for this estimate we will need the assumptiop > —%. The
result is stated in the following

Theorem 2.2.Leta, 3 > —3 andn € N. Then

—_

(2.7) ()] < C

n —

(SIS

wg%Jr 3+1) (z)

N

forall t € U,(x) and eachr € [—1, 1], where the interval/,,(x) has been given in
(1.2 andC = C(«, B) is a positive constant independentoft andz.

It must be mentioned that Theoren?? cannot1 bﬁe §xtended to hold true even for
all a, 8 > —1. This is due to the fact thdt/wﬁ?+z’5+z)(x) — 0asn — oo, if zis
a boundary point =1 orz = —1and$ + ;11 <0or § + i < 0 respectively.

First, we need an auxiliary lemma.
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Lemma 2.3. Leta,b < 0,n € Nandx € [—1,1]. Then
(2.8) wit (1) < 167wt (x)
forall t € Uy,(x).

Proof. First, leta < 0. We will prove that

(2.9) 16 (\/1 “t+ %) ' < <\/1 — T+ %)

2a

holds true for allt € U, (z) with x € [—1,1] andn € N. There is nothing to prove
fora = 0. Leta < 0. Then inequality Z.9) is equivalent to
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respectively. In order to prove (L0 for t € U, (x) we will discuss below the cases
v € [1-5,1] andz € [-1,1— %) separately. We must note that the latter Go Back
interval is empty fom = 1,2, 3. Full Screen
Casex € [1 — %, 1]: In this case we obtaig/T —z — 2 < 2 — 3 = 0, which Close

immediately givesZ.10).
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Casex € [—1, 1-— %): In this case we obtaiy1l — « —% > 0. Therefore inequal-
ity (2.10 is equivalent to (squaring both sides @f10))

6 9
16(1—t)>1—2——VIT—a+—
n n
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or, rewritten,

6 9
(2.11) 154+ 2+ -v1—a—— > 16t.
n n

Sincet € U, () C [q: — 2al® oy “’@f”} , We obtain

6 9 2 1 4 10
r+—-vVli-z—-—=(rzr+—-V]l-z+—=|+|-V]-2z2—-—
n n2 n n? n n?
4 10
n n n
4 1
Zt—l——\/l—x——g.
n n

Hence, inequality4.11) holds true if

4 10
154 —yVi—z—— > 15
N>~ ——"n

>

3w

or if

2
(2.12) 15+ =5 > 15t.

Sincet < 1, inequality ¢.12) is fulfilled. Hence inequality4.10) is also proved.

This completes the proof o?(9) for all z € [—1,1] andt € U, (x).
Now, letb < 0, x € [-1,1] andt € U, (z). Then—t € U, (—z). From @.9) we
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obtain

1 2b 1 2b
16° (\/1+t+ﬁ) =16 < 1 - (—t)+g>
(2.9 1 2b 1 2b
< ( 1—(—x)+—) =<\/1—|-:U—|——) ;
n n
which proves the validity of{.6). &

Proof of Theoren?.2. Sinceqa, 5 > —%, it follows that$ + }L, § +§ > 0. Therefore

we can apply Lemma.3with ¢ = —5 — 7 andb = —7 — 7, obtaining
1 a1 B 1 Lem.2.3 4a+6+1
(2+l ﬁ+l) :w"(’b ’ e 4)(t> S (g‘i‘l E‘i‘l)

wn2 422 ' 4 (t) wnZ 422 ' 4 (.’,U)

forall t € U,(x). Application of Theoren®.1 therefore yields inequality?(2) for
allt € U,(z) as claimeda
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3. Applications

In this section we will give some applications of the local estimates of the Jacobi

polynomials.
We apply Theorem.2 and obtain
1
/ ‘p aﬁ) ‘ (a,ﬁ)(t) dt < C — / w(@B) (t) dt
Un(x) wfla'i_iﬁ"_ﬁ) (l’) n(x)
Using

/ we ()dt<C’ WD ()
@)

(see B]) we find that
1
| berwf e < e
Un(z) n

is valid for alln € N with o, 3 > —%. Estimate §.1) shows that the intervals, ()

are appropriate for measuring the growth of the orthonormal polynomials on subin-
tervals of[—1,1]: U,(z) i Un(z)| = O(1/n), the radius?=")
varies together witlr and becomes smaller:n‘tends tol or —1 and the weighted
integration of(pgf ﬁ)(t))Q on U,(z) is O(1/n), whereas the weighted integral on
[—1,1] equals 1, i.e.,

1
/ [ (1) w @ (8 dt = 1,
-1

Leta,b > —% andCi,Cy > 0. Letm: [1,00) — R be a differentiable function
fulfilling the Hormander conditions

(3.1) e[-1,1],

€[-1,1].

and |m/(t)| < Cyt™?
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fort > 1. It was proved in I] that

" m(k) n
(3.2) ; w,i“’b) (x) =C w7(la,b) (l,)

for all z € [-1,1] andn € N with a positive constant’ = C/(a, b, C;, C3) being
independent of, andz.

Leta,f > —%. Now, we will apply Theoren?.2 and the above estimat&.p)
witha=a+1>0andb= 3+ 1 >0, to obtain

( ) Z”: ( ) ( ( 5)( ))2 Theorem?.2 o n
3.3 m(k) (p;"" (t < _—
k=1 ) 2 wflaJr%”BJr%)(x)

forall t € U,(x) and eachc € [—1, 1] with a constanC' = C(«, 5,C1,C3) > 0
being independent of andz.

In particular, if we letm(k) = 1, then estimate( 3) shows that the Christoffel
function, defined by

fulfills the estimate

(A1) < Ol B)

fort € U,(z) andz € [—1,1] andn € N.
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