J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 3, Issue 1, Article 10, 2002

SOME RESULTS ON L!-APPROXIMATION OF THE r-TH DERIVATE OF
FOURIER SERIES

ZIVORAD TOMOVSKI

FACULTY OF MATHEMATICAL AND NATURAL SCIENCES
P.O. Box 162, 91000 80PJE,
MACEDONIA.

tomovski@iunona.pmf.ukim.edu.mk

Received 22 September, 1999; accepted 18 October, 2001.
Communicated by A. Babenko

ABSTRACT. In this paper we obtain the conditions fbt-convergence of the-th derivatives of
the cosine and sine trigonometric series. These results are extensions of corresponding Sidon’s
and Telyakovskii’s theorems for trigonometric series (case:0).
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1. INTRODUCTION

Let
Qo >
(1.2) flx) = E—I—;ancosnx,
(1.2) g(x) = Z a, sin nx
n=1

be the cosine and sine trigonometric series with real coefficients.
Let Aa,, = a, — ani1, n € {0,1,2,3,...}. The Dirichlet’s kernel, conjugate Dirichlet’s
kernel and modified Dirichlet’s kernel are denoted respectively by

B sm( —)t
——+Zcoskzt 25m ,

n

D,(t) = Z sin kt =

k=1

cost—cos (n+ 1)t

. t )
2sin 5
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1 t ~ cos(n+l)t
D (1) = ——ctge + D, (1) = —— T 2) "
(t) = —5ctgs + Da(t) 2sint

Let

n n

+) et and B, () = 5 + Y e

k=1 k=1

N | —

Then ther-th derivativesD” (t) and D\’ (¢) can be written as

(1.3) 2DW) (1) = EO (t)+ E") (1),

n n

(1.4) 2iD" (1) = EW () —E")(1).

In [2], Sidon proved the following theorem.

Theorem 1.1.Let{w,} -, and{p,}. -, be sequences such that,| < 1, for everyn and let
S | |pn| converge. If

o) k
(1.5) an:Z%Zal,nEN
l=n

k=n

then the cosine seriels (1.1) is the Fourier series of its gum

Several authors have studied the problent bf convergence of the serigs ([L.1) ahd{(1.2).

In [4] Telyakovskii defined the following class df'-convergence of Fourier series. A se-
quence{ay, },-, belongs to the clasS, or {a;} € Sif a, — 0 ask — oo and there exists a
monotonically decreasing sequencé; },-, such thaty "~ JA, < oo and|Aa,| < Ay for all
k.

The importance of Telyakovskii’'s contributions are twofold. Firstly, he expressed Sidon’s
conditions [(1.p) in a succinct equivalent form, and secondly, he showed that the ¢aalso
a class of.!-convergence. Thus, the claSss usually called the Sidon—Telyakovskii class.

In the same paper, Telyakovskii proved the following two theorems.
Theorem 1.2.[4]. Let the coefficients of the seri¢s$x) belong to the class. Then the series
is a Fourier series and the following inequality holds:

/Oﬂ|f(x)|dx§M§:An7
n=0

wherelM is a positive constant, independent fin

Theorem 1.3.[4]. Let the coefficients of the seriggx) belong to the class. Then the
following inequality holds fop = 1,2,3, ...

/ﬂ |g(x)|d:c:2|‘fn—"|+0<z,4n>.

/(p+1)

In particular, g () is a Fourier series iffy > % < 00.

In [5], we extended the Sidon-Telyakovskii claSs= S, i.e., we defined the class,,
r=1,2,3,... asfollows:{a;},-, € S, if ax — 0 ask — oo and there exists a monotonically
decreasing sequengel; } -, such thad "~ | k" A; < oo and|Aay| < Ay for all k.

We note that by4;, | 0 and) ", k" A, < oo, we get
(1.6) EH Ay =0(1), k— oo

It is trivially to see thatS,;; C S, forall r = 1,2,3,.... Now, let{a,}>, € S;. For
arbitrary real numbet,, we shall prove that sequen¢e, }°° , belongs taS,. We defined, =
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max(|Aagl, A1). Then|Aagy| < Ay, i.e. |Aa,| < A, foralln € {0,1,2,...} and{A,}>,is
monotonically decreasing sequence.

On the other hand,
ZA” §A0+ZnAn < 00.
n=0 n=1

Thus,{a,}>, € Sy, i.e. S,.1 C S, forallr =0,1,2,.... The next example verifies that the
implication

{an} € Spy1={a,} €5, r=0,1,2,...
is not reversible.

Example 1.1.Forn = 0,1,2,3, ... definea, = 7 ., 5. Thena, — 0 asn — oo and for
n=0,1,2,3,..., Aa, = (71-1‘;1)2 Firstly we shall show thafa,, }>° , ¢ S;.

Let {A,}>2, is an arbitrary positive sequence such tHat 0 and Aa,, = |Aa,| < A,.
However,> > nA, > >, iz Is divergent, i.e{a,} ¢ Si.

+1)2
Now, foralln = 0,1,2,...let A, = ThenA, | 0, |Aa,| < A, and)"* A, =

S L < oo, ie{an ), € So.

n=1 n2

Our next example will show that there exists a sequdngéc ; such that{a, }°°, € S, but
{an}, ¢ S,  forallr =1,2/3,....

Namely, for alln = 1,2,3,... leta, = > ;2 . Thena, — 0 asn — oo and for
n=123,...,Aa, = ﬁ Let {A,,}>2, is an arbitrary positive sequence such tHat| 0
andAa, = |Aa,| < A,. However,

&9 9 1 0o 1

2 nr-i—lAn Z E nr—i—l_ — 2 -
nrt2 n

n=1 n=1 n=1

is divergent, i.e.{a,} ¢ S,4i. On the other hand, forall = 1,2,...let A, = —15. Then
An 10, ]Aa,| < Ayandd > nmA, =3 5 < oo,ie {a,} €5,

In the same papelr|[5] we proved the following theorem.

Theorem 1.4.[5]. Let the coefficients of the seri¢s (1.1) belong to the class = 0,1, 2, ....
Then ther—th derivative of the serie$ (1.1) is a Fourier series of sgffiec L' (0, 7) and the
following inequality holds:

1
(n+1)%

/ﬂ | £ ()] do < Minmn,
0 n=1

where0 < M = M(r) < oc.
This is an extension of the Telyakovskii Theorem| 1.2.

2. RESULTS

In this paper, we shall prove the following main results.

Theorem 2.1. A null sequencéa,, } belongs to the clasS,, » = 0,1, 2, ... ifand only if it can
be represented as

00 k
(2.1) an:Z%Zal, neN
k=n l=n
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where{w,} -, and{p,} - are sequences such that,| < 1, for all » and

o0
ZnT |pn| < 0.
n=1

Corollary 2.2. Let{a,};-, and{p, };_, be sequences such tHat,| < 1, for everyn and let
Yoy 0" |pa] <00, =0,1,2,....If

00 k
an:Z%Zal, neN
k=n l=n

then ther—th derivate of the serie§ (1.1) is a Fourier series of sgffiec L'.

Theorem 2.3. Let the coefficients of the seriggx) belong to the class,, » = 0,1,2,...
Then ther-th derivate of the serie$ (1.2) converges to a function andifor 1,2, 3, ... the
following inequality holds:

(*) /7r 19" (z)] dz < M (Z lan| -0t + ZHTAn> |
m/(m+1) e £

where
0<M=M(r)<o.

Moreover, ify>°  n"!|a,| < oo, then ther-th derivate of the serie§ (1.2) is a Fourier series of
someg™ € L'(0,7) and

]/F|ghﬁ($)‘d$ S;A4<j£:|an|'nr_1ﬁ—j£:7fl4n>
0 n=1 n=1

Corollary 2.4. Let the coefficients of the serig$z) belong to the class,, » > 1. Then the
following inequality holds:

/7r |g(T) (2)] dz < MZnTAn,
0

n=1

where0 < M = M (r) < oc.

3. LEMMAS

For the proof of our new theorems we need the following lemmas.
The following lemma proved by Sheng, can be reformulated in the following way.

Lemma 3.1. [1] Letr be a nonnegative integer ande (0, 7|, wheren > 1. Then

T

n+Nksin[(n+ i)z + i
D;T)(I')ZZ( +2> [( +2) +2} K@),

. 2\\"+1-k
k=0 (sin (3))
wherep, = % andyg, £ =0,1,2,...,r — 1 denotes various entirér — periodic functions of
r, independent of. More precisely, k = 0,1,2, ..., are trigonometric polynomials cf.
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Lemma 3.2. Let{ozj};?:O be a sequence of real numbers. Then the following relation holds for
v=0,1,2,...,randr =0,1,2,...

- k
Uk = / (0%
./ (k+1) 2

=0

L 1/2
= O|(k+ 1)Tﬂ'+% <Z a? (7 + 1)2V)

J=0

(+3) sin[(j+3) z+ 5]

j 1w dx
(sin (3))

Proof. Applying first Cauchy—Buniakowski inequality, yields

1/2
/7r dx
=/(k+1) (sin (g))%“—”)]

Ur <
i ( | 5 1/2
T 1\" 1 v+ 3)w
X / aj<j—|——> sin{(jjt—)x—i——} dz
7/ (k+1) LZ:;‘ 2 2 2
Since
T dx T dx
< 71_2(7‘+1—y)/
/w/(m) (sin (2))*0T) /() T2
- 7T(/{I 4 1)2(r+1—u)—1
- 2r+1-v)—1
< 7T(/€ + 1)2(7‘-&-1—1/)—1’
we have
2(r+1-v)-1 1/2
U < [r(k+1) ]
N 1/2
T 1\” 1 3
X /0 Lz:;oz](]—i—é) Sin|:(]'+§)$—|—1/;_ 7T:| dx
) N 9 1/2
T 1\" 3
< [2m(k 4 1)200) Y / > a (j + —) sin {(23' e 2 w} dt
N 2 2
Then, applying Parseval’s equality, we obtain:
12 K 1/2
U < [27r (k + 1)2“*1—”)—1] [Z o (5 + 1)*
j=0
Finally,
i 1/2
S
§j=0
O
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Lemma 3.3. Letr € {0,1,2,3,...} and {a;},_, be a sequence of real numbers such that
lax| < 1, for all k. Then there exists a finite constant = M (r) > 0 such that for any: > 0

n

) /wj<n+1> 2

k=0

akﬁ,(:)(x) dr < M- (n+1)""

Proof. Similar to Lemma 3.1 it is not difficult to proof the following equality
—(r " (n+DFsin[(n+d)r 4+ E2
Dfl)(l') _ Z ( 2) [( ) 2 } @k(m),

k=0 (sin (2))r+1 )

wherey, denotes the same variods-periodic functions ofr, independent of.
Now, we have:

n

/7r/(n+1) Z

akD,(:)( )| dx

k=0
T 1\ v o3 . 1 v+3
/ ZO‘ ( ] + 2) S [(] til)_ﬂi"" 2 ﬂ gol,(a:)) de.
/1) i (sin ()
Sincey, are bounded, we have.
T n . l | Z2 . 1 V_Jrg
/ Zaj (]+2) S [(j +T+)1xy+ 2 ﬂ-} Spu(x) dr < KUH,
w/(n+1) =0 (SlIl ( ))
whereU, is the integral as in Lemnja 3.2, aid = K(r) is a positive constant.
Applying Lemmg 3.2, to the last integral, we obtain:
T n . l v . . l V__j’_?)
[ e Ut B )
w/(n+1) =0 (Sln (5))
1/2
=0 | (n+1)y "tz (Za j+1 >
=0 ((n+ 1)+ 1)) =0 ((n+ 1)) .
Finally the inequality[{=) is satisfied. O

Remark 3.4. Forr = 0, we obtain the Telyakovskii type inequality, proved|in [4].

Lemma 3.5. Let » be a non-negative integer. Then for 8ll< |t| < 7w and alln > 1 the
following estimates hold:
i) |EQ 0] < 45,

i [52 0] < 5 0 ().

Proof. (i) The case = 0 is trivial. Really,

~ T 3 47
|En ()] < [Dn(t)] + [Dn(t)] < = <,
2!?5\ el 20 T
47
|E—n(t)| = |En(_t)| < H .
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Letr > 1. Applying the Abel’s transformation, we have:

:_1 AGK) (Ek(t) - %) . (En(t) _ %)]

nzf k1) — k] ( +|Ek()|)+n’" <%+|En(t)|)

=1

d 37T = T T T _ﬁ
< (2m+m){2[(1€+1) —k]+n}— T

k=1

n

Er(zr) (t) — " Z kreikt — "

k=1

ey
3
=
—~
~
-
A

SinceE") (t) = E (—t), we obtain‘E(_?L (t)’ < dn
(i) Applying the inequality(7), we obtain

B0 0] = [iDY (0] < 5 1BY 0]+ 3| E (0] < T
(17i) We note tha* (ctgl) ’ = (ﬁ) Applying the inequality(ii), we obtain

() r
() (1) 1 t 4n" 1
D, ()] <|DV )]+ = || ctg= < +0 )

4. PROOFS OF THE MAIN RESULTS
Proof of Theorem 2]1Let (2.1) hold. Then

Zoo p

Aak = O - )

m
m=k

and we denote
A=y
-
Since|ay| < 1, we get

|[Aar] < foax] Y [Pm] < Ay, ,forall k.
m

m=k

However,
k=1 k=1 m=k m=1 k=1

andA; | 0i.e.{ax} € S,.
Now, if {a),} € S,, we putay, = AA“ZC andpy, = k (A, — A1) .
Hence|ax| < 1, and by [(1.6) we get:

Zkr |pk|:ZkT+1 (Ak;—Ak+1 Z ’f‘+1 kTAk<OO
k=1 k=1

k=1
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Finally,
ak—;Aal ZazA Z%ZA Zk Z_Em Zk%n;%,
i.e. (2.1) holds. O

Proof of Corollary[ 2.2.The proof of this corollary follows from Theorerps|L.4 21. O

Proof of Theorer 2]3We suppose that, = 0 and A, = max (|a1|, A1) .
Applying the Abel’'s transformation, we have:

(4.1) g(x) = Z AapDy(z), x€(0,7].

Applying Lemmm), we have that the seriés ;- Aakﬁ,(:) (x) is uniformly convergent
on any compact subset pf, 7|, wheres > 0.
Thus, representatioh (4.1) implies that

V(2) =Y Aa, Dy ()
k=0

Then,

s

| 1@l

w/(m+1)
Z/ ZAakD(T) dx + O (Z/ AakD T)( ) dx) :
=1 /(5+1) m/(j+1)
Let
A S (R A )
L = Z/ ZAaka (x)|dx, I,= Z/ ZAaka (x)|dx .
j=1/7/G+1) | k=0 j=1 77/ | gp=;
Sincectgs = = + Yo T Wﬂg (seel[3]) it is not difficult to proof the following estimate
" 2(=1)"r!
(Ctgi) = W + 0(1), xr e (O,ﬂ'] .
Thus
() (=Dt -
D, (x) pev +0 ((n+1)*"), z€(0,7]
Hence,
m |j—1 i g m [J—1 /5
L = rlz Aay, / Tfl +0 (Z Z|Aak|(k:—|— )r+1]/ dx)
=1 | k=0 m/(+1) j=1 Lk=0 /(G+1)
m m j—1
. (k + 1) Ag]
= O,,, a; jT 1 + O B I
<j21’ / ) (azlko iG+1)
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whereO, depends on. But

m j—1 r+1 m 7j—1
Z |Aak| _ Z k’+1)TH|Aak\
pelrd o J(] 1) &
< ) (k+ 1) Aay Z -
par WUH)
= > (k4 1) A
k=0
= [Aag| + > (k+1)"|Aayl
k=1
< aa| +27) K| Aay
k=1
< > [Aar| +27) KA
k=1 k=1
< (142)) KA
k=1

Thus,

m j—1 00
3 |Aak| k+1)* Sk
] i 1 Or k Ak )
k=1

j=1 k=0

whereO, depends on.
Therefore,

I = <Z\aj|f 1) + 0, (kak> .
7j=1 k=1
Application of Abel’s transformation, yields

1

Z A, D\ (z) Z AAk A‘“D“ — A, JZ Adi gy
J A'L

=0

Let us estimate the second integral:

(AAL) ’
SZ:: Z ’ / /(G+1)

Applying the Lemma 3]3, we have:

(4.2) Iy, = /
~/(G+1) Z

1=0

Zk: —)

=0

YD (2

>

=0

o
/(G+1)

s

Aal—r
D) (@)

de =0, ((k+1)"),
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whereO, depends om. Then, by Lemma 3]5(iii),

/5 1
g/ﬁ j{:zﬁaq (r) dI|
/(G+D) |i=o Z
j—1 Jj—1 ) /5
[ ) olE L
J+1) x i=0 A; m/(+1) T
(4.3) =0(j )+O( )

whereO, depends om. However, by@),@S) and (1.6), we have

I < i(AAk)J,mLOT (ifAj>

k=1 j=1

— 0.(1) i(mm +1)+ 0, (iﬂ%)
O, <ijrf4j> :

Finally, the inequality[{) is satisfied. O

Proof of Corollary2.4.By the inequalities

m

[eS) 00
E lan| -0t < E n’”_lg |Aay|
n=1 n=1 k=n
[eS) o0
D7D A
n=1 k=n
0o k
= DAy
k=1 n=1
[eS)
T
E k" Ap,
k=1

IN

IN

and Theorerm 2|3, we obtain:

/ 19 (2)|de < M (Zn% )

n=1

where0 < M = M(r) < oc. O
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