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ABSTRACT. We first improve two Ostrowski type inequalities for monotonic functions, then
provide its application for special means.
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1. INTRODUCTION

In [1], Dragomir established the following Ostrowski’s inequality for monotonic mappings.

Theorem 1.1.Let f : [a,b] — R be a monotonic nondecreasing mappingj@rb]. Then for all
x € |a, b], we have the following inequality
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2 S.S. IRAGOMIR AND M.L. FANG

The constang is the best possible one.
In [2], Dragomir, P&aric and Wang generalized Theorgem|1.1 and proved

Theorem 1.2.Let f : [a,b] — R be a monotonic nondecreasing mapping|erb] andty, t,,
t3 € (a,b) be such that; <t <t3. Then

/ F@)dz — [t — ) f(a) + <t5—t1>f<t2>+<b—t3>f<b>1}

b
< (b= 1) (D) + (2 — by — ) f(t2) — (11 — @) f(a) + / T(0)f (2)de

< (b —t3)(f(b) — f(t3)) + (ta — t2)(f(t3) — f(t2))
+ (t2 — t1)(f(t2) — f(t)) + (L — a)(f(t1) — f(a))
(1.2) < max{t; —a,ty — ty,t3 — ts,b — t3}(f(b) — f(a)),

whereT'(z) = sgn(t; — x), for z € [a, t5], andT'(z) = sgn(ts — x), for z € [ty, b].

In the present paper, we firstly improve the above results, and then provide its application for
some special means.

2. MAIN RESULT

We shall start with the following result.

Theorem 2.1.Letf : [a,b] — R be a monotonic nondecreasing mapping[erb| and lett,
t9, t3 € [a, b] be such that; < ¢, < t3. Then

/ F@)de — [(h — a)f(@) + (ts — t2) f(ta) + (b — t3) F D)

< max{(b—t3)(f(b) — f(t3)) + (t2 — t:1)(f(t2) — f(t1)),
(2.1) (ts — ta)(f(t3) — f(t2)) + (1 — a)(f(t1) — f(a))}
(2.2) < max{t; —a,ty —t1,t3 — t2, b — t3}(f(b) — f(a)).

Proof. Sincef(z) is a monotonic nondecreasing mapping/@rb|, we have

/ F@)dz — [(b — @) f(a) + (ts—tl)f(t2)+(b—t3)f(b)]‘

t3 b
/ (f(2) - fla))de + / (f(2) - f(ta))da + / (f(2) — f(b))de

= ‘ {/atl(f(x) — f(a))dz + /:(f(x) _ f(tg))dx:|

- [ e = sanae+ [ 50~ e

< max{(b —t3)(f(b) — f(t3)) + (t2 — t1)(f(t2) — f(t1)),
(ts —t2)(f(3) = f(t2)) + (L —a)(f(t1) — f(a))}
S max{tl —a,tg —tl,tg —tz,b—tg}(f(b) ( ))
Thus [2.1) and (2]2) is proved. O

Fort, =ty = t3 = z, Theorenj 21 becomes the following corollary.
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Corollary 2.2. Let f be defined as in Theorgm P.1. Then

/ f(@)dz — [(z — a)f(a) + (b — w)f(b)]’

< max{(b—z)(f(b) — f(2)), (z — a)(f(z) — f(a))}
<max{z —a,b— 2z} -max{(f(z) — f(a)), (f(b) — f(x))}
)

< [30-a+]e- 2| 0o - s,

2
Forz = “*” , We get trapezoid inequality.
Corollary 2.3. Let f be defined as in Theordm P.1. Then

K110,

23) gb‘T“max{(f(“;b)—f<a>),(f<b>—f<“;b))}

1
< 50— a)(f(b) = f(a).
Fort, = a, ty = z, t3 = b, we get Theorer 1]1.

xr —

3. APPLICATION FOR SPECIAL MEANS

In this section, we shall give application of Corollary]2.3. Let us recall the following means.
(1) The arithmetic mean:

a+b

A= Aa,b) = 5

a,b>0.

(2) The geometric mean:
G = G(a,b) = Vab, a,b>0.
(3) The harmonic mean:

2

H=Hab) =7

a,b>0.

(4) The logarithmic mean:

b—a
L=1L _ > ; If a=0, thenL =a.
(a,b) := o Ina’ a,b>0,a#b; If a=0>, thenL(a,b) =a
(5) The identric mean:
bb
I =1I(ab) = ( ) , a,b>0,a#0b; If a=0, thenl(a,b) = a.
e \ a?

(6) Thep-logarithmic mean:

bp—i-l _ ap+1

L,=L,(a,b):= [m} ., a#b Ifa=0, thenL,(a,b) =a

wherep # —1,0 anda, b > 0.
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The following simple relationships are known in the literature
H<SGLSLLI<A

We are going to use inequality (2.3) in the following equivalent version:

‘bia/abf(t)dt_w

(3.1) g%max{(f<a;b>_f(a)),(f(b)—f(a;b»}
1
- )
2

wheref : [a,b] — R is monotonic nondecreasing @n b].

3.1. Mapping f(x) = zP. Consider the mapping : [a,b] C (0,00) — R, f(x) = 2P, p > 0.
Then

b
i [ =13,

@+ 0) 4o )

Then by 3.1), we get

p p
230.0) = A )| < g { (5] - - (“50) ]
2 2 2
1 a+b\’
(5]
p
e () )
2 2 2
1 . p(b—a)ar™!
(3.2) < §p(b —a)Ly" — 1
Remark 3.1. The following result was proved in[2].
1
|LE(a,b) — A(a”, b")| < ép(b —a)LP"]

3.2. Mapping f(z) = —1/z. Consider the mapping : [a,b] C (0,00) — R, f(z) = —1.
Then

b
i [ =L b

fla) + f(b) Afa, b)

2 T G2(ab)’

J. Inequal. Pure and Appl. Math2(3) Art. 31, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MONOTONIC MAPPINGS ANDAPPLICATIONS 5

Then by [3.1), we get

A(a, b ~ 1 1 2 2 1
G2((a,b)) -L 1@“’)' = émaX{a‘m mrz}
1 b—a 1 b—a 1 b—a
T2 ala+b) 2 ab 2 bla+b)
<1. b—a _1. b—a
2 G*a,b) 2 bla+Dd)
Thus we get
1 b
(3.3) OSAL—G2§§a+b(b—a)L
Remark 3.2. The following result was proved in[[2].
1

0<AG-G*< ~(b—a)L.

(\]

3.3. Mapping f(z) = Inz. Consider the mapping : [a,b] C (0,00) — R, f(z) = Inx.

Then
b—a/f =1InI(a,b),

Jla) = J0) = InG(a,b),

Then by [3.1), we get

1
IInI(a,b) —InG(a,b)| < §max{lna;b —lna,lnb—lna;—b}

1, a+b 1b—a 1 2b
-n—=-—+———-In——.
2 2a 2L(a,b) 2 a+0b

Thus we get
I a+b 1. b-a
. < — < 2 L(ab)
(3.4) 1< e 5 e
Remark 3.3. The following result was proved in[[2].

I 1=
1< — <e?2i@b,
G
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