

# Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 1, Issue 2, Article 13, 2000

## ON A BOJANIĆ-STANOJEVIĆ TYPE INEQUALITY AND ITS APPLICATIONS

#### ŽIVORAD TOMOVSKI

FACULTY OF MATHEMATICAL AND NATURAL SCIENCES, P.O. BOX 162, 91000 SKOPJE, MACEDONIA. tomovski@iunona.pmf.ukim.edu.mk

Received 22 September, 1999; accepted 7 March, 2000 Communicated by H.M. Srivastava

ABSTRACT. An extension of the Bojanić–Stanojević type inequality [1] is made by considering the r-th derivate of the Dirichlet kernel  $D_k^{(r)}$  instead of  $D_k$ . Namely, the following inequality is proved

$$\left\| \sum_{k=1}^{n} \alpha_k D_k^{(r)}(x) \right\|_1 \le M_p n^{r+1} \left( \frac{1}{n} \sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p} ,$$

where  $\|\cdot\|_1$  is the  $L^1$ -norm,  $\{\alpha_k\}$  is a sequence of real numbers,  $1 , <math>r = 0, 1, 2, \ldots$  and  $M_p$  is an absolute constant dependent only on p. As an application of this inequality, it is shown that the class  $\mathcal{F}_{pr}$  is a subclass of  $\mathcal{BV} \cap \mathcal{C}_r$ , where  $\mathcal{F}_{pr}$  is the extension of the Fomin's class,  $\mathcal{C}_r$  is the extension of the Garrett–Stanojević class [8] and  $\mathcal{BV}$  is the class of all null sequences of bounded variation.

Key words and phrases: Bojanić-Stanojević inequality, Sidon-Fomin's inequality, Bernstein's inequality.  $L^1$ -convergence cosine series.

2000 Mathematics Subject Classification. 26D15, 42A20.

#### 1. Introduction

In 1939, Sidon [5] proved his namesake inequality, which is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications, for instance in  $L^1$ -convergence problems and summation methods with respect to trigonometric series, newer and newer improvements of the original inequality have been proved by several authors.

Fomin [2], by applying the linear method for summing of Fourier series, gave another proof of the inequality and thus it is known as Sidon-Fomin's inequality. In addition, S. A. Telyakovskii in [7] has given an elegant proof of Sidon-Fomin's inequality.

**Lemma 1.1.** (Sidon-Fomin). Let  $\{\alpha_k\}_{k=0}^n$  be a sequence of real numbers such that  $|\alpha_k| \leq 1$  for all k. Then there exists a positive constant M such that for any  $n \geq 0$ ,

(1.1) 
$$\left\| \sum_{k=0}^{n} \alpha_k D_k(x) \right\|_1 \le M(n+1).$$

ISSN (electronic): 1443-5756

© 2000 Victoria University. All rights reserved.

In [9] we extended this result and we gave two different proofs of the following lemma.

**Lemma 1.2.** [9]. Let  $\{\alpha_j\}_{j=0}^k$  be a sequence of real numbers such that  $|\alpha_k| \leq 1$  for all k. Then there exists a positive constant M, such that for any  $n \geq 0$ ,

(1.2) 
$$\left\| \sum_{k=0}^{n} \alpha_k D_k^{(r)}(x) \right\|_1 \le M(n+1)^{r+1}.$$

However, Bojanić and Stanojević [1] proved the following more general inequality of (1.1).

**Lemma 1.3.** [1]. Let  $\{\alpha_i\}_{i=0}^n$  be a sequence of real numbers. Then for any  $1 and <math>n \ge 0$ 

(1.3) 
$$\left\| \sum_{k=0}^{n} \alpha_k D_k(x) \right\|_{1} \leq M_p(n+1) \left( \frac{1}{n+1} \sum_{k=0}^{n} |\alpha_k|^p \right)^{1/p},$$

where the constant  $M_p$  depends only on p.

We note that this estimate is essentially contained (case p=2) in Fomin [2]. Sidon-Fomin's inequality is a special case of the Bojanić-Stanojević inequality, i.e., it can easily be deduced from Lemma 1.3.

It is easy to see that the Bojanić-Stanojević inequality is not valid for p=1. Indeed, if  $\alpha_n=1$  and  $\alpha_k=0$   $(k\neq n, k\in \mathbb{N})$  then the left side is of order  $\log n/n$  while the right side is of order 1/n as  $n\to\infty$ .

In order to prove our new results we need the following lemma.

**Lemma 1.4.** [10]. If  $T_n(x)$  is a trigonometrical polynomial of order n, then

$$||T_n^{(r)}|| \le n^r ||T_n||.$$

This is S. Bernstein's inequality in the  $L^1(0,\pi)$ -metric (see [10, Vol. 2, p.11]).

### 2. MAIN RESULT

Now we will prove a counterpart of inequality (1.3) in the case where the r-th derivate of the Dirichlet's kernel  $D_k^{(r)}$  is used instead of D(x).

**Theorem 2.1.** Let  $\{\alpha_k\}_{k=1}^n$  be a sequence of real numbers. Then for any  $1 and <math>r = 0, 1, 2, \ldots, n \in \mathbb{N}$  the following inequality holds:

(2.1) 
$$\left\| \sum_{k=1}^{n} \alpha_k D_k^{(r)}(x) \right\|_1 \le M_p n^{r+1} \left( \frac{1}{n} \sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p},$$

where the constant  $M_p$  depends only on p.

*Proof.* Applying first the Bernstein inequality and then the Bojanić-Stanojević inequality, we have

$$\left\| \sum_{k=1}^{n} \alpha_k D_k^{(r)}(x) \right\| \le n^r \left\| \sum_{k=1}^{n} \alpha_k D_k^{(r)}(x) \right\| \le M_p n^{r+1} \left( \frac{1}{n} \sum_{k=1}^{n} |\alpha_k|^p \right)^{1/p}.$$

It is easy to see that the inequality (1.2) is a special case of the inequality (2.1), i.e. it can easily be deduced from Theorem 2.1.

#### 3. APPLICATION

The problem of  $L^1$ -convergence via Fourier coefficients consists of finding the properties of Fourier coefficients such that the necessary and sufficient condition for  $||S_n - f|| = o(1)$ ,  $n \to \infty$  is given in the form  $a_n \lg n = o(1)$ ,  $n \to \infty$ . Here  $S_n$  denotes the partial sums of the cosine series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \,.$$

The Sidon-Telyakovskii class S [7] is a classical example for which the condition  $a_n \lg n = o(1)$ ,  $n \to \infty$  is equivalent to  $||S_n - f|| = o(1)$ ,  $n \to \infty$ . Later Fomin [3] extended the Sidon-Telyakovskii class by defining a class  $\mathcal{F}_p$ , p > 1 of Fourier coefficients as follows: a sequence  $\{a_k\}$  belongs to  $\mathcal{F}_p$ , p > 1 if  $a_k \to 0$  as  $k \to \infty$  and

(3.1) 
$$\sum_{k=1}^{\infty} \left( \frac{1}{k} \sum_{i=k}^{\infty} |\Delta a_i|^p \right)^{1/p} < \infty.$$

We note that Fomin [3] has given an equivalent form of the condition (3.1). Namely, he proved that  $\{a_n\} \in \mathcal{F}_p, p > 1$  iff  $\sum_{s=1}^{\infty} 2^s \Delta_s^{(p)} < \infty$ , where

$$\Delta_s^{(p)} = \left\{ \frac{1}{2^{s-1}} \sum_{k=2^{s-1}+1}^{2^s} |\Delta a_k|^p \right\}^{1/p} .$$

Let  $\mathcal{BV}$  denote the class of null sequence  $\{a_n\}$  of bounded variation, i.e.  $\sum_{n=1}^{\infty} |\Delta a_n| < \infty$ . The class  $\mathcal C$  was defined by Garrett and Stanojević [4] as follows: a null sequence of real numbers satisfy the condition  $\mathcal C$  if for every  $\varepsilon > 0$  there exists  $\delta(\varepsilon) > 0$  independent of n, such that

$$\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta a_k D_k(x) \right| dx < \varepsilon, \quad \text{for every } n.$$

On the other hand, Stanojević [6] proved the following inclusion between the classes  $\mathcal{F}_p$ ,  $\mathcal{C}$  and  $\mathcal{BV}$ .

**Lemma 3.1.** [6]. For all  $1 the following inclusion holds: <math>\mathcal{F}_p \subset \mathcal{BV} \cap \mathcal{C}$ .

In [8] we defined an extension  $C_r$ ,  $r=0,1,2,\ldots$ , of the Garrett-Stanojević class. Namely, a null sequence  $\{a_k\}$  belongs to the class  $C_r$ ,  $r=0,1,2,\ldots$  if for every  $\varepsilon>0$  there is a  $\delta>0$  such that

$$\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta a_k D_k^{(r)}(x) \right| < \varepsilon \,, \quad \text{for all } n \,.$$

When r = 0, we denote  $C_r = C$ .

Denote by  $I_m$  the dyadic interval  $[2^{m-1}, 2^m)$ , for  $m \ge 1$ . A null sequence  $\{a_n\}$  belongs to the class  $F_{pr}$ , p > 1,  $r = 0, 1, 2, \ldots$  if

$$\sum_{m=1}^{\infty} 2^{m(1/q+r)} \left( \sum_{k \in I_m} |\Delta a_k|^p \right)^{1/p} < \infty, \quad \text{where} \quad \frac{1}{p} + \frac{1}{q} = 1.$$

It is obvious that  $F_{pr} \subset F_p$ . For r = 0, we obtain the Fomin's class  $F_p$ .

**Theorem 3.2.** For all 1 and <math>r = 0, 1, 2, ... the following inclusion holds  $F_{pr} \subset BV \cap C_r$ .

*Proof.* By Lemma 3.1, it is clear that  $F_{pr} \subset BV$ . It suffices to show that

$$\left\| \sum_{k=n}^{\infty} \Delta a_k D_k^{(r)}(x) \right\| = o(1), \quad n \to \infty.$$

Since

$$\sum_{m=1}^{\infty} 2^{m(1/q+r)} \left( \sum_{k \in I_m} |\Delta a_k|^p \right)^{1/p} = 2 \sum_{m=1}^{\infty} \left\{ 2^{(m-1)[(r+1)p-1]} \sum_{k \in I_m} |\Delta a_k|^p \right\}^{1/p} \,,$$

we have

$$\sum_{k=1}^{\infty} k^{(r+1)p-1} |\Delta a_k|^p < \infty.$$

Applying the Theorem 2.1, we obtain

$$\left\| \sum_{k=n}^{\infty} \Delta a_k D_k^{(r)}(x) \right\| \le M_p \left( \sum_{k=n}^{\infty} k^{(r+1)p-1} |\Delta a_k|^p \right)^{1/p} = o(1), \quad n \to \infty.$$

REFERENCES

- [1] R. BOJANIĆ AND Č.V. STANOJEVIĆ, A class of  $L^1$ -convergence, *Trans. Amer. Math. Soc.*, **269** (1982), 677–683.
- [2] G.A. FOMIN, On linear method for summing Fourier series, *Mat. Sb* (Russian), **66** (**107**), (1964), 144–152.
- [3] G.A. FOMIN, A class of trigonometric series, Math. Zametki (Russian), 23 (1978), 117–124.
- [4] J.W. GARRETT AND Č.V. STANOJEVIĆ, Necessary and sufficient conditions for  $L^1$  convergence of trigonometric series, *Proc. Amer. Math. Soc.*, **60** (1976), 68–72.
- [5] S. SIDON, Hinreichende Bedingungen fur den Fouirier charakter einer Trigonometrischen Reihe, *J. London, Math. Soc.*, **14** (1939), 158.
- [6] Č.V. STANOJEVIĆ, Classes of  $L^1$  convergence of Fourier series and Fourier Stiltjes series, Proc. Amer. Math. Soc., 82 (1981), 209–215.
- [7] S.A. TELYAKOVSKII, On a sufficient condition of Sidon for the integrability of trigonometric series, *Math. Zametki* (Russian), (1973), 742–748.
- [8] Ž. TOMOVSKI, An extension of the Garrett- Stanojević class, *Approx. Theory Appl.*, **16**(1) (2000), 46–51. [ONLINE] A corrected version is available in the *RGMIA Research Report Collection*, **3**(4), Article 3, 2000. *URL*: http://rgmia.vu.edu.au/v3n4.html
- [9] Ž. TOMOVSKI, An extension of the Sidon-Fomin inequality and applications, *Math. Inequal. Appl.*, (to appear).
- [10] A. ZYGMUND, Trigonometric Series, Cambridge Univ. Press, 1959.