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Abstract

Some new inequalities which counterpart Jensen’s discrete inequality and im-
prove the recent results from [4] and [5] are given. A related result for gener-
alized means is established. Applications in Information Theory are also pro-
vided.
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Let f : X — R be a convex mapping defined on the linear spa@ndz; € X,
pi >0 (=1, ..,m)with B, :=>" p, > 0.

The following inequality is well known in the literature as Jensen’s inequal-
ity

1 1 «
(1.1) f (P—m ;pmjl) < P_m ;plf(ajz) Further Reverse Results for

Jensen’s Discrete Inequality
and Applications in Information
Theory

There are many well known inequalities which are particular cases of Jensen’s
inequality, such as the weighted arithmetic mean-geometric mean-harmonic 1. Budimir, S.S. Dragomir and
mean inequality, the Ky-Fan inequality, the Holder inequality, etc. For a com- ). Pecaric
prehensive list of recent results on Jensen’s inequality, see the bgand the
papers §]-[ 15] where further references are given. Title Page

In 1994, Dragomir and lonescti{] proved the following inequality which

i - Contents
counterparts.1) for real mappings of a real variable.
o . < >
Theorem 1.1.Let f : I C R — R be a differentiable convex mapping én(/ p >
is the interior ofI), z; € I, p; > 0 (i=1,..,n)and) .  p; = 1. Then we
Go Back

have the inequality
Close

(1.2) 0 < Zsz(sz) — f <sz$1> Quit
' ' Page 3 of 31
< Z pixif'(x:) Z piti Z pif' (@),
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wheref’ is the derivative off on I.

Using this result and the discrete version of the Griss inequality for weighted
sums, S.S. Dragomir obtained the following simple counterpart of Jensen’s in-
equality []:

Theorem 1.2.With the above assumptions foand ifm, M e; andm < z; <
M (i =1,...,n), then we have

Further Reverse Results for
Jensen’s Discrete Inequality

n and Applications in Information
(13) 0< Zplf(xz) (Zpﬂ:z) < M m) (f (M) — f’ (m)) ) Theory
=1 I. Budimir, S.S. Dragomir and
J. Pecarit

This was subsequently applied in Information Theory for Shannon’s and Rényi’s
entropy.
In this paper we point out some other counterparts of Jensen’s inequality that
are similar to {..3), some of which are better than the above inequalities. Contents
44 44
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The following result holds.

Theorem 2.1.Letf : I C R — R be a differentiable convex mapping i‘)rand

z; €l Withay <y <--- <z andp; > 0(i=1,..,n)withd> " p, = 1.
Then we have

(2.1) 0 < szf(xz) —f (szl‘z)

< (@p —x1) (f'(20) = f(21)) maxl{PkPkH}

1<k<n—
1

< 4@ —o0) () = ).

whereP, .= > p;and Py =1 — P,

Proof. We use the following Griss type inequality due to J. ECdPié (see for
example P5)):

1 < 1 < 1 <
(2.2) @ ;%’aibi - @ ;Qiai : @ ;Qibi

< [an — [ [bn — b1 1<y

[Qk Qk+1:|
Q2 ]’
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provided thata, b are two monotonic:—tuples, ¢ is a positive one(), =

Yo 4 >0,Qk = Zle g andQr+1 = Qn — Q1.
If in (2.2) we choosey; = p;, a; = z;, b; = f'(z;) (@anda;, b; will be monotonic
nondecreasing), then we may state that

szxzzpz xZ

gun—xl)(f (@) = f'(21)) max {PyPep}.

1<k<n-—1

(2.3) sz if'(:)

Now, using (.2) and @.3) we obtain the first inequality ir2(1).
For the second inequality, we observe that

_ 1 1
Py Py =P (1= Py) < 7 (Po+1- Py =5

forall k € {1,...,n — 1} and then
max {Pk P, 1} < 1
1<k<n—1 =y
which proves the last part o2 (1). O

Remark2.1 Itis obvious that the inequality2(1) is an improvement ofl(.3) if
we assume that the order foris as in the statement of Theoréiri.

Another result is embodied in the following theorem.

Further Reverse Results for
Jensen’s Discrete Inequality
and Applications in Information
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Theorem 2.2.Let f : I C R — R be a differentiable convex mapping (%n

andm, M €I withm < z; < M (i=1,...,n)andp;, > 0 (i = 1,...,n) with
oo pi = 1. If Sis asubset of the sét, ..., n} minimizing the expression

1
2.4 o
(2.4) sz 5|
€S
then we have the inequality Further Reverse Results for
Jensen’s Discrete Inequality
n n and Applications in Information
25) 0 < S nde) g (zp>
=1 =1 I. Budimir, S.S. Dragomir and
< QM —m)(f'(M)— f'(m)) J. Petarit
1
< (M —m)(f(M)— f'(m)),
< O —m) (M) = f'(m)) e Page
where Contents
Q=> p (1—21%)- «“« 3
€S €S
< | 2

Proof. We use the following Gruss type inequality due the Andrica and Badea
[2]: Go Back

n n n Close
(2.6) |Q, Z giaib; — Z qia; - Z qibi Quit
i=1 i=1 i=1
Page 7 of 31
< (M1 - m1) (M2 - m2) Z 4qi <Qn - Z%)
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provided thatn; < a; < My, me < b; < M, fori = 1,...,n, andS is the
subset of{ 1, ..., n} which minimises the expression

1
ZQi_iQn .

€S

Choosingy; = p;, a; = z;, b; = f'(x;), then we may state that
Further Reverse Results for
Jensen’s Discrete Inequality

(2.7) 0 < Z pizif -Tz Z DiTi Z pif xl and Applicatic%r'\]se(i)r;):nformation
I. Budimir, S.S.vDr.a}gomir and
< (M - m) (f/(M> . f/(m)) sz <1 o sz) J. Pecari¢
€S ieS
. . oL T Title Page
Now, using (.2) and @.7), we obtain the first inequality in2(5). For the last ' g
part, we observe that Contents
2 44 44
1 1
SZ(Zpi‘i‘l_Zpi) =1 < >
1€S i€S
Go Back
and the theorem is thus proved. O Close
The following inequality is well known in the literature as the arithmetic Quit
mean-geometric mean-harmonic-mean inequality:
Page 8 of 31

(2.8) Ay (p,x) > Gy (pyx) > Hy (p, ),
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where

A, (px) = Zpixi - the arithmetic mean,
=1
Gy (p,x) : =]]a% -the geometric mean,
=1
H ( x) . 1 - the harmonic mean Further Reverse Results for
n \Ps o ! Jensen'’s Discrete Inequality
Z & and Applications in Information
=1 Ti Theory
andZ?ZI D = 1 (pi Z 0, i — L—n) l. Budimir,JIS.PSe.égrr?;gomir and
Using the above two theorems, we are able to point out the following reverse
of the AGH - inequality. _
Title Page
Proposition 2.3. Letx; > 0 (i = 1,...,n) andp; > 0with > " p; = 1. FES—
(1) fog <9 <--- <2,y < x,, then we have <« >
Ay (p, o < | J
(2.9) 1 < A (p, )
G (p, ) Go Back
i 2
< exp (In xl) max {Pkpk+1} Close
1T,  1<k<n-—1 .
L Quit
i 2
< exp 1 M Page 9 of 31
- 4 1Ty, '
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(1) If the setS C {1,...,n} minimizes the expressio.{), and0 < m <
;<M <oo(i=1,..,n), then

A, (p, )
(210) 1 = Gy (p,x
< eXp[Q.%;Mm)] SGXPE'%;MW]'

The proof goes by the inequalitie®.{) and @.5), choosingf(z) = —In .
A similar result can be stated f6f,, and H,,.

Proposition 2.4. Letp > 1andz; > 0,p; >0 (i =1,....,n) with>"" p, = 1.

(1) foy <29 <--- <2,y < x,, then we have

n n p
(211) 0 < > pat— (pr>
< plzy—a) (a8 = x’l’_l) max. {P.Pypi1}

< S(wn—m) (a8t —ab ).

(i7) If the setS C {1,...,n} minimizes the expressio.{), and0 < m <
;<M <oo(i=1,..,n),then

(2.12) 0< ipixf — <i pixi>
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and Applications in Information
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< QM ) (M — )
< ip(M —m) (MP~h—mP).

Remark2.2 The above results are improvements of the corresponding inequal-
ities obtained in ).
Remark2.3. Similar inequalities can be stated if we choose other convex func-

tions such asyf(x) = zlnx, z > 0 or f(x) = exp (z), x € R. We omit the Further Reverse Results for
Jensen’s Discrete Inequality

details. and Applications in Information
Theory
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In 1996, Dragomir and Gohl[] proved the following converse of Jensen’s
inequality for convex mappings dr".

Theorem 3.1.Let f : R” — R be a differentiable convex mapping Bft and

(Vf) (I) f— (af (‘T) af(l‘)> Further Reverse Results for
’ oxl 777 Oxn ’ Jensen’s Discrete Inequality
and Applications in Information
the vector of the partial derivatives,= (2!, ..., 2") € R™. Theory
|f xi 6 Rm (Z - ]_, ceey m), pl Z 07 Z - ]_7 ceey m, Wlth Pm = Z:il pZ > O, then |. Budimir, S.S. Dragomir and
J. Pecarit
1 « 1 «
(1) 0< P_m szf(l‘z) —f <P_m ZM%) .
i=1 = itle Page
1 & Contents
< LS (9w < >0 vsta me>.
=1 44 44
The result was applied to different problems in Information Theory by providing < >
different counterpart inequalities for Shannon’s entropy, conditional entropy,
mutual information, conditional mutual information, etc. Go Back
For generalizations of3(1) in Normed Spaces and other applications in In- Close

formation Theory, see Mdts Ph.D dissertation’[]].

Recently, Dragomir4] provided an upper bound for Jensen'’s difference Quit

Page 12 of 31
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which, even though it is not as sharp &slj, provides a simpler way, and for
applications, a better way, of estimating the Jensen’s differeficdsis result
is embodied in the following theorem.

Theorem 3.2.Letf : R" — R be a differentiable convex mapping ande R",
1 =1,...,m. Suppose that there exists the vecioré € R” such that

(3.3) ¢ < x; < ® (the order is considered on the co-ordinates)
andm, M € R™ are such that
(3.4) m <V f(r;) <M

forall i € {1,...,m}. Thenforallp; > 0 (i = 1,...,m) with P,, > 0, we have
the inequality

] — ] — 1
(35) 0< P_m;pi(xZ) —f (P_m Zzlpzﬂﬁz) < 1 @ — o[l [[M —m],

where||-|| is the usual Euclidean norm dr"™.

He applied this inequality to obtain different upper bounds for Shannon’s

and Rényi’s entropies.

In this section, we point out another counterpart for Jensen’s difference, as-

suming that thé/—operator is of Holder’s type, as follows.

Theorem 3.3.Let f : R" — R be a differentiable convex mapping ande R",
pi > 0 (i=1,...,m) with P,, > 0. Suppose that th& —operator satisfies a
condition ofr — H—Hoélder type, i.e.,

(3.6) IVf(x) =Vl < Hllz—yl", forallz,y € R",

Further Reverse Results for
Jensen’s Discrete Inequality
and Applications in Information

Theory

I. Budimir, S.S. Dragomir and
J. Pecarit
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whereH > 0, r € (0,1] and||-|| is the Euclidean norm.

Then we have the inequality:
5 i
P, — DiZ;

1 m
(3.7) 0 < P_Z
H r
< = > ppile -z
1<i<j<m

P’H’L
Further Reverse Results for
Jensen’s Discrete Inequality
Proof. We recall Korkine’s identity, and Apphcanc%r;]se in Jnformauon

I. Budimir, S.S. Dragomir and

Pii <y17'7;2 < szyw ! ipzxz> J. Pecaric
- m .

Title Page
Dipj y',xi—x%x,yER”,
2P2 ]Z1 j ’ ’ Contents
and simply write 44 >
4 >
1 m
P, < pi (V f(2:) < szVf z;), Zplx2> Go Back
= Close
= 5p2 Z Dbip; Vf xz) Vf($])7 Xr; — l‘j> . Quit
S Page 14 of 31
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Using 3.1) and the properties of the modulus, we have
— Pm — pl ‘,'U’L Pm — prl

1 m
apr 2 bins (VS (i) = V(). 25 — ;)]

<
m =1
1 m Further Reverse Results for
- " . ) — . . Jensen'’s Discrete Inequality
< 2 p2 Z Dipj ”Vf(xl) Vf(x])H ||sz Lj H and Applications in Information
mo5=1 Theory
H - r+1 I. Budimir, S.S. Dragomir and
< ﬁ Z bipj sz - $]|| J. Pecari¢
mo =1
and the inequality3.7) is proved. O Title Page
Corollary 3.4. With the assumptions of Theoren3and if Contents
A = max;<;<j<m ||z; — z;||, then we have the inequality pp b
1 m 1 m HAT-H m | | 2
38 0< — if () — — i | < 1— 2.
Proof. Indeed, as Close
» Quit
r r+1
Y. opwlla -l <A Y pp. Page 15 of 31
1<i<j<m 1<i<j<m
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However,

1 m m
Z pip; = 5 <Z DiD; —Zpipj) = % (1 —;p?) ;

1<i<j<m i,j=1 i=j
and the inequality3.8) is proved. O
The case of Lipschitzian mappings is embodied in the following corollary.
Corollary 3.5. Let f : R* — R be a differentiable convex mapping and furthe{ Rgversi Rlesultslf,or
is Lipschitzian with the constadt > 0, i.e., Theory
(3.9 IVf(z) =Vl <L|z—y|, forall z,y € R", g B“dim”ffe-ég:%gom”a”d
where||-|| is the Euclidean norm. Then
310 ) < 1 1 Title Page
(3.10) < P_m lezf(xz) —f P_m lezxz Contents
T T 2 44 44
2
< L P—mzpz || — P—mzpi%‘ < >
i=1 i=1
. . L Go Back
Proof. The argument is obvious by Theoreh8, taking into account that for 0=ac
r=1, Close
m m 2 Quit
2 2
> pplle =il = Py pillaill” = || Y pi|) Page 16 of 31
1<i<j<m i=1 i=1
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Moreover, if we assume more about the vectars we can obtain a

simpler result that is similar to the one if][

i=1,n1

Corollary 3.6. Assume thaf is as in Corollary3.5. If

(3.11) ¢ <z; <® (onthe co-ordinates)y),® € R" (i =1,..,m),

then we have the inequality

Further Reverse Results for

1 m 1 m Jensen_s D_|scre_te Inequall_ty
(3-12) 0 < P_ szf(l’z) o f (P_ ZZ%%) and Appllcatlc%r'\]se(ljr;;nformatlon
i=1 moi_1
1 I. Budimir, S.S. Dragomir and
< - ||(I) ¢H J. Pecaric
Proof. It follows by the fact that inR”, we have the following Gruss type in- Title Page
equality (as proved in
a y( P I]) Contents
1 & ) 1 & 1 <« >
(3.13) szp [EA] szp:c <lle—al, ) ,
=1 =1
provided that §.11) holds. O Go Back
Remark3.1 For some Griiss type inequalities in Inner Product Spaces;/pee [ Close
Quit

Page 17 of 31
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Start with the following definitions from.

Definition 4.1. Let —oo < a < b < oco. ThenCM [a, b] denotes the set of all
functions with domaina, b] that are continuous and strictly monotonic there.

Definition 4.2. Let —oco < a < b < oo, and letf € CM [a,b]. Then, for
each positive integen, eachn—tuplez = (z4,...,z,), wherea < z; < b

. . Further Reverse Results for
(j=1,2,...,n), and eacl-tuplep = (p1,ps, ..., pn) ,Wherep; > 0(j =1,2,...,n) Jensen’s Discrete Inequality

and}_"_, p; = 1, let My (x,y) denote the (weighted) mean gl App"Ca“‘;r"feg‘r;”f"’mat“’”

I. Budimir, S.S. Dragomir and

f_l {ijf (ZEJ)} . J. Pecari¢
j=1

We may state now the following result. Title Page
Theorem 4.1. Let S be the subset dfl, ..., n} which minimizes the expression Contents
S icspi — 1/2|. If f,g € CM [a, ], then «“ 3
< 4
sup {|My (2,p) = My (@, )} < Q|| (7| [ (rea™)|| lo®) = gta)P,
’ OO > Go Back
provided that the right-hand side of the inequality is finite, where, as above, Close
Quit
= . 1 — .
¢ ;pl ;pz ’ Page 18 of 31
and H ||OO is the usual Sup-norm. J. Ineq. Pure and Appl. Math. 2(1) Art. 5, 2001
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Proof. Let,asinf],h = fog !,n>1,

x = (x1,%2,...,x,) andp = (p1,p2, ..., Pn)
be as in the Definitiod.2, andy,; = ¢ (z;) (j = 1,2, ...,n). By the mean-value

theorem, for some in the open interval joining (a) to f(b), we have
Further Reverse Results for

Mf(xap) - Mg(mvp) = fil {Zp]f(x]>} - fil [h {ijg(xj)}]
g=1 = Jensen’s Discrete Inequality
, and Applications in Information
= (/) () ij (x;) {Zp]g T }] Theory

Lj=1 I. Budimir, S.S. Dragomir and

= () () ijh(yj)—h{zpjyj}] .

Li=1 Title Page
_ !/
= ('@ p {h(yj) —h (Z pkyk> }] : S
Lj=1 k=1 <4« 44
Using the mean-value theorem a second time, we conclude that there exists < >
pointszy, 2, ..., 2, in the open interval joining(a) to g(b), such that
Go Back
Mf (x,p) - Mg (Qi,p)
N , Close
= (f ) (a) [pl {(X=p1)yr —paya — - — PuYn } M (21) _
, Quit
+po{—p1yr + (1 —=p2)y2 — -+ — Puln} P (22)
e Page 19 of 31
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= () (@[ {p2 (1 —y2) + -+ pu (y1 — ya) } W (1)
+p2{p1 (Y2 — 1) + -+ o (Y2 — Yn) } W (22)
+pn {01 (o — 1) + - + Pt (Un — Yn1) } 1/ (20)]

= ('@ > ppsyi— ) (W () — B ()}

1<i<j<n

Using the mean value theorem a third time, we conclude that there exists points
w;; (1 <14 < j <mn)inthe open interval joining(a) to g(b), such that

(@) D2 pips (g = y) {1 (z0) = W' (2))}

= (f_l)/ (@) Z pip; (i — y;5) (2 — 2;) B (wij).

1<i<j<n
Consequently,

‘Mf (xap) _Mg (%,p)’
<|U @] X sl - wl -1z -l )

1<i<j<n

RN Y sl — il — 2

1<i<j<n

<y

< (by the Cauchy-Buniakowski-Schwartz inequality)
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< ey |wes” > vl - vl
o 1<i<j<n
2
> piwjlz - 7l
1<i<j<n
< (by the Andrica and Badea result)
Further R Results f
< ey Jeesy” <sz.) <1 : Zpi) o) g | e
0 0 : : and Applications in Information
€S €S Theory
|. Budimir, S.S. D irand
(z pi) (1 - sz) 19(0) — g(@)? Sl
ies i€
= o] [|¢rea™ || 19 - gt@r, Tile Page
) Contents
and the theorem is proved. O
44 44
Corollary 4.2. If f,g € CM [a, b], then
< | 2
NG 2
S‘ipﬂMf (z,p) — My (z,p) N <Q- f’ : ? ? “1g(b) — g(a)|”, Go Back
. . . ) = Close
provided that the right hand side of the inequality exists. "
uit

Proof. This follows at once from the fact that

(Y ==
fl f 1 J. Ineq. Pure and Appl. Math. 2(1) Art. 5, 2001
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and

g/

g/

(Fog™)' = -

(9’097 (f"o g(gt)o—g_(f”)’go g (g 097" { 1 <f’) '} og.

]

Remark4.1l This establishes Theorem 4.3 frof) &nd replaces the multiplica-
tive factori by Q. In Corollary4.2, we also replaced the multiplicative factor

1 by Q.
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We give some new applications for Shannon’s entropy

d 1
Hy (X):=> pilog, .
i=1 t

whereX is a random variable with the probability distributi¢p)

=L Further Reverse Results for
Jensen’s Discrete Inequality

Theorem 5.1. Let X be as above and assume that> p, > --- > p, or e AT T 1 (e e et

p1 < pp < --- < p,.. Then we have the inequality Theory
( )2 I. Budimir, S.S. Dragomir and
P1—Pr = J. Pecaric
(5.1) 0 <log,r— H,(X) < I max {P.Pi1} . i
Proof. We choose in Theorem 1, f(z) = —log, ,x > 0,2, = = (i =1,...,7). Title Page
Then we have:; < z, < --- <z, and by ¢.1) we obtain Contents
1 1 1 1 - <4< 44
0 <log,r — H; (X) < (19_7«_P_1> (%JFPIl) g,?g{PkPkH}, < >
L . . o . . Go Back
which is equivalent toF.1). The same inequality is obtaineif < p, < --- <
Dy ] Close
Theorem 5.2. Let X be as above and suppose that Quit
Page 23 of 31
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If S'is a subset of the s€., ..., 7} minimizing the expressid)_, s p; — 1/2
then we have the estimation

(par — pM)2

. < — < . .
(5.2) 0 < logyr = Hy(X) <@ 3 e

Proof. We shall choose in Theorefn?2,

f(x) = —log,x, = >0, xi:l (i=1,r).

Di
Thenm = ﬁ, M = ;ﬁ’ f'(z) = —=i and the inequality4.3) becomes:
J 1
0 < log,r— Zpi log, —
i=1 ‘
1 1 1 1 1
QH <_ - _> (‘I 1 )
Pm Pum Pm pPMm
1 (pM - pm)2
Q — -
Inb PrPm
hence the estimatiorb(2) is proved. O

Consider the Shannon entropy

(5.3) H(X):=H,(X)=> piln—

Further Reverse Results for
Jensen’s Discrete Inequality
and Applications in Information

Theory

I. Budimir, S.S. Dragomir and
J. Pecarit

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 24 of 31

J. Ineq. Pure and Appl. Math. 2(1) Art. 5, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ivanb@zagreb.tekstil.hr
mailto:sever.dragomir@vu.edu.au
mailto:pecaric@mahazu.hazu.hr
http://jipam.vu.edu.au/

and Rényi’s entropy of order (« € (0,00) \ {1})

1 .
T & In (; D; ) .
Using the classical Jensen’s discrete inequality for convex mappings, i.e.,
(5.5) f (ZPz%) < szf(xz)u
=1 =1

wheref : I C R — R is a convex mapping of, z; € I (i=1,...,r) and
(pi);_1; is a probability distribution, for the convex mappirfgr) = —Inx,
we have

(5.6) In (i:pzxz) > zr:pl- In ;.
i=1 i=1

Chooser; = p®~* (i =1,...,7) in (5.6) to obtain

(5.4) Hiy (X) =

which is equivalent to

(1 - a) [Ho (X) - H(X)] 2 0.
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Now, if « € (0,1), thenH},) (X) < H (X),andifa > 1thenH, (X) >
H (X) . Equality holds iff(p;),_1 is a uniform distribution and this fact follows
by the strict convexity of- In () . This inequality also follows as a special case

of the following well known fact: H,; (X) is a nondecreasing function af.
See for example] or [27].

Theorem 5.3. Under the above assumptions, given that = min,_1 p;,
pm = max,_1; p;, then we have the inequality

(5 — o)’

a—1,_ n—1
Py Pmi

(6.7) 0= (1—a)[Hg(X)-H(X)] <Q-

forall o € (0,1) U (1, 00).
Proof. If a € (0,1), then
zi=pi € [P o]
and ifa € (1,00), then
z;=pi € [pfn_l,p?‘w_l} Jforie {1,...,n}.

Applying Theorem2.2 for z; := p®~! and f(z) = —Inx, and taking into
account thaff’(z) = —2, we obtain

(1—a) [Hi (X) = H (X)]
Qo = whir ") (—r + ) i aeO1),

<

Q (pr 't — i) <— a1 + a1,1> if ae(l,00)
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a—1__a—1)2
Q- Wil wi) it e (0,1),

Pm Py

a—1_ a—1 2
Q- —(p]wa—lp:xﬂ—l) if aec(l,00)

Py Pm

(5 -’

a—1, o—1
Py P

=Q-

forall a € (0,1) U (1, 00) and the theorem is proved. O

Using a similar argument to the one in Theorgrg we can state the follow-
ing direct application of Theorem 2.

Theorem 5.4. Let (p;),_1; be as in Theorerfi.3. Then we have the inequality

(i =)
Py o

(58) 0<(1-a)Hy(X)-Inr—-—alhG,(p) <Q-

9

forall a € (0,1) U (1, 00).
Remark5.1 The above results improve the corresponding results frgrarid
[4] with the constant) which is less tharj.
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