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ABSTRACT. In this paper we study some properties of non powerful numbers. We evaluate the
n-th non powerful number and prove for the sequence of non powerful numbers some theorems
that are related to the sequence of primes: Landau, Mandl, Scherk. Related to the conjecture
of Goldbach, we prove that every positive integer≥ 3 is the sum between a prime and a non
powerful number.
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1. I NTRODUCTION

A positive integerv is called non powerful if there exists a primep such thatp|v andp2 - v.
Otherwise, ifv has the canonical decompositionv = qα1

1 ·· · ··qαr
r , there existsj ∈ {1, 2, . . . , r}

such thatαj = 1.
It results thatv can be written uniquely asv = f · u, wheref is squarefree,u is powerful and

(f, u) = 1.
In this paper we use the following notations:

• K(x)= the number of powerful numbers less than or equal tox
• C(x)= the number of non powerful numbers less than or equal tox
• vn is then-th non powerful number

We use a special case of a classical formula:

008-08

mailto:vladcopil@gmail.com
mailto:pan@al.math.unibuc.ro
http://www.ams.org/msc/


2 VLAD COPIL AND LAURENŢIU PANAITOPOL

Theorem A. If h ∈ C1, g is continuous,a is powerful and

G(x) =
∑

a≤v≤x
v non powerful

g(v),

then ∑
a≤v≤x

v non powerful

h(v)g(v) = h(x)G(x)−
∫ x

a

h′(t)G(t)dt.

G. Mincu and L. Panaitopol proved [5] the following.

Theorem B.
K(x) ≥ c

√
x− 1.83522 3

√
x for x ≥ 961

and
K(x) ≤ c

√
x− 1.207684 3

√
x for x ≥ 4.

As C(x) = [x]−K(x) it results that

(1.1) [x]− c
√

x + 1.207684 3
√

x ≤ C(x) ≤ [x]− c
√

x + 1.83522 3
√

x

the first inequality being true forx ≥ 4, while the second one is true forx ≥ 961.
We also use

Theorem C. We have the relation

K(x) =
ζ(3/2)

ζ(3)

√
x +

ζ(2/3)

ζ(2)
3
√

x + O
(
x

1
6 exp(−c1 log

3
5 (log log x)−

1
5

)
.

2. I NEQUALITIES FOR vn

Theorem 2.1.We have the relation

vn > n + c
√

n− a 3
√

n for n ≥ 88,

wherea = 1.83522.

Proof. If we putx = vn in the second inequality from (1.1), it results that

n ≤ vn − c
√

vn + a 3
√

vn

for n ≥ 4.
Let f(x) = x − c

√
x + a 3

√
x − n andx′n = n + c

√
n − k 3

√
n. As f(vn) > 0, andf is

increasing, if we prove thatf(x′n) < 0, it results thatvn > x′n.
Denoteg(n) = f(x′n). Proving thatf(x′n) < 0 is equivalent with proving thatg(n) < 0.

Therefore we intend to prove that

g(n) = c
√

n− k 3
√

n− c

√
n + c

√
n− k 3

√
n + a

3

√
n + c

√
n− k 3

√
n < 0.

We use the following relations forx > 0:

(2.1) 1 +
x

2
>
√

1 + x > 1 +
x

2
− x2

8

and

(2.2) 1 +
x

3
> 3
√

1 + x > 1 +
x

3
− x2

9
.
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Puttingx = x′n in (2.1) gives

√
n +

c

2
− k

2 6
√

n
>

√
n + c

√
n− k 3

√
n >

√
n +

c

2
− k

2 6
√

n
−
√

n

8

(
c√
n
− k

3
√

n2

)2

,

while x = x′n gives from (2.2)

3
√

n +
c

3 6
√

n
− k

3 3
√

n
>

3

√
n + c

√
n− k 3

√
n > 3

√
n +

c

3 6
√

n
− k

3 3
√

n
−

3
√

n

9

(
c√
n
− k

3
√

n2

)2

.

Using the previous relations in the expression ofg(n) yields

g(n) < c
√

n− k 3
√

n− c
√

n− c2

2
+

ck

2 6
√

n
+

c
√

n

8

(
c√
n
− k

3
√

n2

)2

+ a 3
√

n +
ac

3 6
√

n
− ak

3 3
√

n
.

In order to proveg(n) > 0 it is enough to prove that

(a− k) 3
√

n− c2

2
+

(
ck

2
+

ac

3

)
1
6
√

n
− ak

3 3
√

n
+

c
√

n

8

(
c√
n
− k

3
√

n2

)2

< 0.

The best result is obtained by takingk = a, therefore

−c2

2
+

5

6

ac
6
√

n
− a2

3 3
√

n
+

c
√

n

8

(
c√
n
− a

3
√

n2

)2

< 0.

As c√
n

> a
3√

n2
for n ≥ 1, it is enough to prove that

5ac

6 6
√

n
+

c
√

n

8
· c2

n
<

c2

2
+

a2

3 3
√

n
.

The last relation is true because

c3

8
√

n
<

a2

3 3
√

n
⇔
(

3c3

8a2

)6

< n that holds forn ≥ 816

and
5ac

6 6
√

n
<

c2

2
⇔
(

5a

3c

)6

< n that holds forn ≥ 8.

In conclusion, we have
vn > n + c

√
n− a 3

√
n

for n ≥ 816. Verifications done using the computer allow us to lower the bound ton ≥ 88. �

Theorem 2.2.We have the relation

vn < n + c
√

n− 3
√

n for n ≥ 1.

Proof. If we putx = vn in the first inequality from (1.1), it results that

n > vn − c
√

vn + α 3
√

vn,

whereα = 1.207684.
Let f(x) = x − c

√
x + α 3

√
x − n andx′′n = n + c

√
n − h 3

√
n. We havef(vn) < 0, f is

increasing, so if we prove thatf(x′′n) > 0, it results thatvn < x′′n.
Denoteg(n) = f(x′′n). Proving thatf(x′′n) > 0 is equivalent to proving thatg(n) > 0.

Therefore we have to prove that

g(n) = n + c
√

n− h 3
√

n− c

√
n + c

√
n− h 3

√
n + α

3

√
n + c

√
n− h 3

√
n− n < 0.
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Using the relations (2.1) and (2.2) as we did in the proof of Theorem 2.1, gives

c
√

n− h 3
√

n− c
√

n− c2

2
+

ch

2 6
√

n
+ α 3

√
n +

αc

3 6
√

n
− αh

3 3
√

n
− α 3

√
n

9

(
c√
n
− h

3
√

n2

)2

> 0.

The previous relation is equivalent to

3
√

n(α− h) +

(
ch

2
+

αc

3

)
1
6
√

n
>

c2

2
+

α 3
√

n

9

(
c√
n
− h

3
√

n2

)2

+
αh

3 3
√

n
.

Thus, it is enough to prove that forh < α

3
√

n(α− h) +
c

6
√

n

(
h

2
+

α

3

)
>

c2

2
+

αh

3 3
√

n
+

α 3
√

n

9
· c2

n
.

We have 3
√

n(α− h) > c2

2
, if

(2.3) n >

(
c2

2(α− h)

)3

.

It remains to prove that

c
6
√

n

(
h

2
+

α

3

)
>

αh

3 3
√

n
+

αc2

9
3
√

n2
.

Therefore it is enough to prove thatch
2

> αh
3 6√n

and thatcα
3

> αc2

9
√

n
; both the relations are true for

n ≥ 1.
In conclusion, the condition (2.3) gives the lower bound for realizing the inequality from

Theorem 2.2: we takeh = 1 son > 1471. Verification using the computer allows us to take
n ≥ 1. �

Theorem 2.3.There existsc2 > 0 such that

vn = n +
ζ(3/2)

ζ(3)

√
n +

ζ(2/3)

ζ(2)
3
√

n + O
(
exp(−c2 log

3
5 n(log log n)−

1
5

)
.

Proof. We haveC(x) = [x] −K(x), and putx = vn. It results thatn = vn −K(vn); we use
Theorem C to evaluateK, and obtain

n = vn − c
√

vn − b 3
√

vn + O
(
n

1
6 g(n)

)
,

wherec = ζ(3/2)/ζ(3), b = ζ(2/3)/ζ(2) andg(n) = exp
(
−c2(log n)

3
5 (log log n)

−1
5

)
with

c2 > 0 andg(n) →∞ asn →∞.
So

(2.4) −n + vn − c
√

vn − b 3
√

vn = O
(
n

1
6 g(n)

)
.

From Theorem 2.1 and 2.2 we have

n + c
√

n− 1.83522 3
√

n < vn < n + c
√

n− 3
√

n,

therefore

(2.5) vn = n + c
√

n− xn
3
√

n, with (xn)n≥1 bounded.

It is known that
√

1 + x = 1 +
x

2
− x2

8
+ · · ·
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and
3
√

1 + x = 1 +
x

3
− x2

9
+ · · · .

Therefore
√

vn =
√

n

(√
1 +

c√
n
− xn

3
√

n2

)
=
√

n

(
1 +

c

2
√

n
− xn

2
3
√

n2
− 1

8

(
c√
n
− xn

3
√

n2

)2

+ · · ·

)
,

so

(2.6)
√

vn =
√

n +
c

2
− xn

2 6
√

n
−
√

n

8

(
c√
n
− xn

3
√

n2

)2

+ · · · .

In a similar manner, we get

(2.7) 3
√

vn = 3
√

n +
c

3 6
√

n
− xn

3 3
√

n
−

3
√

n

9

(
c√
n
− xn

3
√

n2

)2

+ · · · .

From (2.4), (2.6) and (2.7) it results that

c
√

n− xn
3
√

n− c
√

n− c2

2
+

cxn

2 6
√

n
+

c
√

n

8

(
c√
n
− xn

3
√

n2

)2

− b 3
√

n− bc

3 6
√

n
+

bxn

3 3
√

n
+

b 3
√

n

9

(
c√
n
− xn

3
√

n2

)2

+ · · · = O
(
n

1
6 g(n)

)
.

Therefore
− 3
√

n(xn + b) = O
(
n

1
6 g(n)

)
,

which yields

(2.8) xn = −b + O

(
g(n)

6
√

n

)
.

From (2.5) and (2.8) we obtain

vn = n + c
√

n + b 3
√

n + O
(
g(n) 3

√
n
)
.

In conclusion, there existsc2 > 0 such that

vn = n + c
√

n + b 3
√

n + O
(
exp(−c2 log

3
5 n(log log n)

1
5 )
)

.

�

3. SOME PROPERTIES OF THE SEQUENCE OF NON POWERFUL NUMBERS

In relation to the prime number distribution function, E. Landau [4] proved in 1909 that

π(2x) < 2π(x) for x ≥ x0.

Afterwards J.B. Rosser and L. Schoenfeld proved [6] that

π(2x) < 2π(x) for all x > 2.

In relation to this problem we can state the following result.

Theorem 3.1.We have the relation

(3.1) C(2x) ≥ 2C(x) for all integersx ≥ 7.
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Proof. Using Theorem B we obtain:

[x]− c
√

x + 1.207684 3
√

x ≤ C(x) ≤ [x]− c
√

x + 1.83522 3
√

x,

for x ≥ 961.
In order to prove (3.1) it is therefore sufficient to show that

[2x]− c
√

2x + 1.207864
3
√

2x ≥ 2[x]− 2c
√

x + 3.67044 3
√

x.

As [2x] ≥ 2[x], it is sufficient to show that

c
√

x(2−
√

2) > 2.14885307 3
√

x,

which is true if 6
√

x ≥ 1.687939, more precisely forx ≥ 24. Verifications done using the
computer show that Theorem 3.1 is true for every integer8 ≤ x ≤ 961, which concludes our
proof. �

Remark 3.2. From Theorem 3.1 it follows thatvn+1 < 2vn for everyn ≥ 1.
The Mandl inequality [2] states that, forn ≥ 9

p1 + p2 + . . . + pn <
1

2
npn,

wherepn is then-the prime.

Related to this inequality, we prove that for non powerful numbers

Theorem 3.3.We have forn ≥ 7 that

(3.2) v1 + v2 + . . . + vn >
1

2
nvn.

Proof. Let n > C(961) + 1 = 912. In order to evaluate the sum
n∑

i=1

vi, we use Theorem A with

h(t) = t, g(t) = 1 anda = 961. It follows thatG(x) = C(x)− C(961) and then we obtain
n∑

i=C(961)+1

vi = vn(n− C(961))−
∫ vn

961

(C(t)− C(961))dt.

Then
n∑

i=1

vi =

C(961)∑
i=1

vi + nvn − vnC(961)−
∫ vn

961

C(t)dt + C(961)(vn − 961).

Using Theorem B, we get a better upper bound fork′(x), namely

k′(x) ≤ x− c
√

x + 1.83522 3
√

x for x ≥ 961.

Therefore, it is enough to prove that

C(961)∑
i=1

vi + nvn − 961C(961)−
∫ vn

961

(
t + c

√
t + 1.83522

3
√

t
)

dt >
nvn

2
.

Integrating and making some further numerical calculus (C(961) = 911,
911∑
i=1

vi = 445213)

lead us to

vn

(
n

2
− vn

2
+

2c

3

√
vn −

3

4
· 1.83522 3

√
vn

)
> −463153.9136.
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So, in order to prove (3.2), it is enough to prove that

n

2
− vn

2
+

2c

3

√
vn −

3

4
· 1.83522 3

√
vn > 0.

This is equivalent with proving that

vn < n +
4c

3

√
vn −

3

2
· 1.83522 3

√
vn.

Taking into account Theorem 2.2 and the fact that forn > C(961) + 1 we haven < vn < 2n,
it is enough to prove that

n + c
√

n− 3
√

n < n +
4c

3

√
n− 3

2
· 1.83522 · 3

√
2 · 3
√

n,

which is true forn ≥ 1565.
Verifications done with the computer, lead us to state that the theorem is true for everyn ≥ 1,

excepting the casen = 7. �

The well known conjecture of Goldbach states that every even number is the sum of two odd
primes. Related to this problem, Chen Jing-Run has shown [1] using the Large Sieve, that all
large enough even numbers are the sum of a prime and the product of at most two primes.

We present a weaker result, that has the advantage that is easily obtained and the proof is true
for every integern ≥ 3.

Theorem 3.4.Every integern ≥ 3 is the sum between a prime and a non powerful number.

Proof. Let n ≥ 3 andpi the largest prime that does not exceedn. Thuspi < n ≤ pi+1 and

i =

{
π(n)− 1, if n is prime,

π(n), otherwise

Then we consider the numbersn−p1, n−p2, . . . , n−pi. We prove that one of thesei numbers
is non powerful.

Suppose that all thesei numbers are powerful. It results that

c
√

n− 2 ≥ k(n− 2) ≥ i ≥ π(n)− 1.

Taking into account thatπ(x) > x
log x

for x ≥ 59, we obtain

c
√

n− 2 ≥ n

log n
− 1 for n ≥ 59.

Forn ≥ 4 we havec
√

n− 2 > 2
√

n− 1, therefore it is enough to prove that

2
√

n ≥ n

log n
.

But for n ≥ 75 we have2 log n <
√

n.
Therefore the supposition we made (thatn − p1, n − p2, . . . , n − pi are all powerful) is

certainly false forn ≥ 75 and it results that every integer greater than 75 is the sum between a
prime and a non powerful number. Direct computation leads us to state that every integern ≥ 3
is the sum between a prime and a non powerful number. �

In 1830, H. F. Scherk found that

p2n = 1± p1 ± p2 ± . . .± p2n−2 + p2n−1

and
p2n+1 = 1± p1 ± p2 ± · · · ± p2n−1 + 2p2n.
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The proof of these relations was first given by S. Pillai in 1928. W. Sierpinski gave a proof of
Scherk’s formulae in 1952, [7].

In relation to Scherk’s formulae, we have the following.

Theorem 3.5.For n ≥ 6, we have
vn = ±εn ± v1 ± v2 ± . . .± vn−2 + vn−1

whereεn is 0 or 1.

Proof. Following the method Sierpinski used in [7], we make an induction proof of this theo-
rem.

If n = 6, we havev6 = 10 and
1 = −2− 3 + 5− 6 + 7,

2 = 1− 2− 3 + 5− 6 + 7,

3 = −2− 3− 5 + 6 + 7,

4 = 1− 2− 3− 5 + 6 + 7,

5 = 2− 3 + 5− 6 + 7,

6 = 1 + 2− 3 + 5− 6 + 7,

7 = 2− 3− 5 + 6 + 7,

8 = 1 + 2− 3− 5 + 6 + 7,

9 = −2 + 3− 5 + 6 + 7,

10 = 1− 2 + 3− 5 + 6 + 7.

Therefore every natural number less than or equal to 10 can be expressed in the desired form.
We suppose the theorem is true forn and prove it forn + 1.
Let k be a positive integer less than or equal tovn+1. Then, becausevi+1 < 2vi for every

natural numberi, we have
k ≤ vn+1 < 2vn,

so
−vn < k − vn < vn.

It follows that 0 ≤ ±(k − vn) < vn; we can apply the induction hypothesis and write
±(k − vn) = ±εn ± v1 ± v2 ± . . .± vn−2 + vn−1. It will immediately follow that there exist a
choice of the signs+ and− such that

k = ±εn ± v1 ± v2 ± . . .± vn−1 + vn.

As vn ≤ vn+1, we get
vn = ±εn ± v1 ± v2 ± . . .± vn−2 + vn−1.

�
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