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Abstract: In this paper we study some properties of non powerful numbers. We evaluate
the n-th non powerful number and prove for the sequence of non powerful num-

bers some theorems that are related to the sequence of primes: Landau, Mandl,

Scherk. Related to the conjecture of Goldbach, we prove that every positive in-
teger> 3 is the sum between a prime and a non powerful number.
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1. Introduction

A positive integen is called non powerful if there exists a primeuch thap|v and

p*f .

Otherwise, ifv has the canonical decomposition= ¢;* - - - - -
j€{l,2,..., r} suchthaty; = 1.

It results thaty can be written uniquely as = f - u, wheref is
powerful and(f, u) = 1.

In this paper we use the following notations:

q%r, there exists

squarefreey is

e K (x)=the number of powerful numbers less than or equal to

e C'(z)=the number of non powerful numbers less than or equal to

e v, is then-th non powerful number

We use a special case of a classical formula:

Theorem A. If h € C!, g is continuousg is powerful and

Gl)= Y g,

a<v<zx
v hon powerful

then

> h(v)g(v) = h(z)G(z) - / ’ W ()G (t)dt.

a<v<zx
v non powerful

G. Mincu and L. Panaitopol prove8][the following.
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Theorem B.

K(z) > c/x — 183522z forx > 961
and

K(x) < evx —1.207684/x forx > 4.

As C(z) = [x] — K(x) it results that
(1.1) [z] — cv/x +1.207684/x < C(x) < [z] — e/ + 1.83522/x

the first inequality being true for > 4, while the second one is true for> 961.

We also use

Theorem C. We have the relation

K(z)= (?()/)2)\/_ C(Q(/?) Jr+ 0 (:1:6 exp(—c; log%(log log x)’%> :
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2. Inequalities for v,

Theorem 2.1. We have the relation
vy >n+cyn—av/n  forn > 88,

wherea = 1.83522.
Proof. If we putx = v, in the second inequality fronmi.(1), it results that
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while z = x; gives from ¢.2)

w3\/— 39n

>\/n+c\/_—k;\/_>\/_+

Using the previous relations in the expressiom ©f) yields

g(n) < cv/n—k/n—c

22\/‘

In order to provegy(n) > 0 it is enough to prove that

2 ck ac
AN/ o a
(a —k)V/n 2+(2+3)

Vn 3Un 8

1 ak c\/ﬁ( c k

The best result is obtained by takihg: a, therefore

¢ +§ ac c\/_ a \’ <0
2 69n 3\/‘ 8 \/‘ 2
As f > \dﬁ forn > 1, itis enough to prove that
5ac Lo c? _ c? N a’
6n & n 2 3¥Yn

The last relation is true because

3 < a? - 3c
8\/5 3\3/5 8a?
and

dac

6/n

3\ 6
—> < n that holds fom > 816

2 6
< ‘< & 5—a < n that holds forn > 8.
2 3c

?M_%_%ﬁ(
5 (7 7)

2
)<0.

i T
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In conclusion, we have
Uy >N+ cv/n—avn

for n > 816. Verifications done using the computer allow us to lower the bound to
n > 88. O

Theorem 2.2. We have the relation
vy, <n+cevn—+/n forn>1.

Proof. If we putz = v, in the first inequality from{.1), it results that

n > v, — C\/Up + @YUy,

wherea = 1.207684.
Let f(z) = x — cy/r+ a/z —nandz! = n+ cy/n— h/n. We havef(v,) < 0,
f isincreasing, so if we prove thgtz!) > 0, it results thaw,, < z..
Denoteg(n) = f(z!!). Proving thatf(x”) > 0 is equivalent to proving that

n

g(n) > 0. Therefore we have to prove that

g(n):n—l—c\/_—h\?’/ﬁ—C\/n+c\/_—h{’/ﬁ+oz€/n+c\/ﬁ—h\3/ﬁ—n<O.

Using the relationsA.1) and @.2) as we did in the proof of Theoref1, gives

cv/n—hy/n—c n—c—2+i+a€/ﬁ+ ac _ah _avn e h 2>()
2 2¥n 39n 3Yn 9 \Wn n? '

The previous relation is equivalent to

ch ac\ 1 A ayn( c h\> ah
V(o —h) + (2426 “ < _ an
Vn(a )+(2+3)%>2+ 9 ( >+
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Thus, it is enough to prove that for< o

h h 3 2
%(a—h)+i(—+9) >c—+a—+a\/ﬁ-%.

n\273) 7273y 9
We havey/n(a — h) > <, if
CQ 3
2. — ) .
@3 "> (=)

It remains to prove that

o (b ah o
Va\2 " 3) 730 oV

Therefore it is enough to prove thd} > ‘i’} and thatc$ > gf, both the relations
are true fom > 1.

In conclusion, the conditior2(3) gives the lower bound for realizing the inequal-
ity from Theorem2.2 we takeh = 1 son > 1471. Verification using the computer
allows us to take: > 1. O

Theorem 2.3. There existg, > 0 such that

LG ),
=ty VT )

Proof. We haveC'(z) = [z] — K(x), and putr = v,,. Itresults that, = v,, — K (v,,);
we use Theorem to evaluateX’, and obtain

n=uv,—c pn—b\?/ﬁJrO(n%g(n)),

1

Vn+ 0 <exp( ¢s logs n(loglog n)_5> :
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wherec = ((3/2)/C(3),b = ((2/3)/¢(2) andg(n) = exp (~ca(log n)’ (loglog n) =)
with ¢, > 0 andg(n) — oo asn — .
So

(2.4) —n + v, — /v, — b, = O (n%g(n)) :
From Theoren?.1and2.2we have

n+cy/n — 1.83522¢/n < v, < n+ cy/n — /n,
therefore
(2.5) vy =n+cvn —z,¥/n,  with (z,),>; bounded

It is known that )

x xXr
rz=1+2-2 4.

2 8
and )
\3/1+x:1+§—%+~~.
Therefore
c Ty
=iy 75 )
a1+ c Ty 1 c Tn 2+
= ’]’L —_ e = JRN—
2vn 29n2 8 \\/n  /n? ’
so
2
c T vn [ ¢ T
2.6 n = - — ——
@8 Vm=vets g 8(\/5 3n2)+
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In a similar manner, we get

Tn n (¢
@7 o=+ f‘%‘?(—n
From (2.4), (2.6) and @.7) it results that
c? cv/n [ ¢
c n—xn\/ﬁ—c n——+2\ﬁ/ﬁ 8 <%
s be br, bJn [ c
BTN (%_ ;
Therefore )
n(z, +b) =0 (n@(n)) ,
which yields
_ g(n)
(2.8) ZBn——b—i-O(%).

From (2.5 and ¢.8) we obtain

Up =n+ cy/n+by/n+ 0 (9(n)/n) .

In conclusion, there exists > 0 such that

Un=n+cyn+byn+0 (eXp( ¢ log® n(log log nﬁ))
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3. Some Properties of the Sequence of Non Powerful Numbers

In relation to the prime number distribution function, E. Landéugroved in 1909
that
7(2z) < 2m(x) fora > x.

Afterwards J.B. Rosser and L. Schoenfeld prov@dhat
7m(2x) < 2mw(x) forall x > 2.
In relation to this problem we can state the following result.
Theorem 3.1. We have the relation
(3.1) C(2z) > 2C(x) forall integersz > 7.
Proof. Using Theoren® we obtain:
(7] — ev/x + 1.207684/x < C(x) < [z] — ev/z + 1.83522+/x,

for z > 961.
In order to prove {.1) it is therefore sufficient to show that

[27] — cV2z + 1.207864V 27 > 2[x] — 2¢v/7 + 3.67044+/x.
As [2z] > 2[z], it is sufficient to show that
V(2 —V/2) > 2.14885307/,

which is true if /2 > 1.687939, more precisely for > 24. Verifications done using
the computer show that Theoreiril is true for every integes < x < 961, which
concludes our proof. O
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Remarkl. From Theorens.1it follows thatv,, ., < 2uv, for everyn > 1.
The Mandl inequality 2] states that, fon > 9

1
b1 +p2 + ... +pn < §npna
wherep,, is then-the prime.
Related to this inequality, we prove that for non powerful numbers

Theorem 3.2. We have fon > 7 that

1
(3.2) v+ v+ . v, > §n’un.

Proof. Letn > C'(961) + 1 = 912. In order to evaluate the sufn’ v;, we use

i=1
TheoremA with h(t) = t, g(t) = 1 anda = 961. It follows thatG(z) = C(x) —
C'(961) and then we obtain

S v =wa(n - C(961)) — / (C(t) — C(961))dt.
i=C(961)+1 961
Then
n C(961) on
> = > vt no, —v,C(961) — / C(t)dt + C(961)(v, — 961).
i=1 i=1 961

Using Theoreni3, we get a better upper bound o), namely
K(x) <z — /o + 1.83522/x for x > 961.
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Therefore, it is enough to prove that
C(961)

3" v+ v, — 961C(961) — / <t +evi+ 1.835226’/2) dt > %

911
Integrating and making some further numerical calculu®61) = 911, > v; =
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The well known conjecture of Goldbach states that every even number is the sum
of two odd primes. Related to this problem, Chen Jing-Run has shbjwmsing
the Large Sieve, that all large enough even numbers are the sum of a prime and the
product of at most two primes.

We present a weaker result, that has the advantage that is easily obtained and the
proof is true for every integer > 3.

Theorem 3.3. Every integem > 3 is the sum between a prime and a non powerful
number.

Proof. Let n > 3 andp; the largest prime that does not exceedThusp;, < n <
pi+1 and
: m(n) — 1, if nis prime,
1 = .
7(n), otherwise
Then we consider the numbets— p;, n — py,..., n — p;. We prove that one of

thesei numbers is non powerful.
Suppose that all thegenumbers are powerful. It results that

cvn—2>k(n—2)>i>mn(n)—1.

Taking into account that(x) > 2 for z > 59, we obtain

log z

n—2>-—""_1forn> 59,
logn

Forn > 4 we havecy/n — 2 > 2,/n — 1, therefore it is enough to prove that
2v/n >

But forn > 75 we have2logn < /n.

n

logn’
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Therefore the supposition we made (that p, n — po,..., n — p; are all pow-
erful) is certainly false for, > 75 and it results that every integer greater than 75
is the sum between a prime and a non powerful number. Direct computation leads
us to state that every integer> 3 is the sum between a prime and a non powerful
number. O]

In 1830, H. F. Scherk found that
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4=1-2-3-5+6+T,

5=  2-345-6+T,
=1+2-34+5-6+T7,
7=  2-3-546+T,
8=14+2-3-5+6+7,
9 = -2 + 3—5 -+ 3 —+ 77 Properties of Non Powerful
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