J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 1, Issue 2, Article 18, 2000

AN APPLICATION OF ALMOST INCREASING AND  4-QUASI-MONOTONE
SEQUENCES

H. BOR

DEPARTMENT OFMATHEMATICS, ERCIYES UNIVERSITY, KAYSERI 38039, TURKEY
bor@erciyes.edu.tr

Received 14 April, 2000; accepted 27 April, 2000
Communicated by L. Leindler

ABSTRACT. In this paper a general theorem on absolute weighted mean summability factors
has been proved under weaker conditions by using an almost increasidegaadi-monotone
sequences.
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1. INTRODUCTION

A sequencéb,,) of positive numbers is said to bequasi-monotone, ib, > 0 ultimately
andAb, > —d,, where(d,,) is a sequence of positive numbers (see [2]). Let,, be a given
infinite series with(s,,) as the sequence of itsth partial sums. By, andt, we denote the
n-th (C, 1) means of the sequenc¢e,) and(na,), respectively. The seri€s, a,, is said to be
summablgC, 1|,, k > 1, if (see [5])

=1

°° 1
an_l |ty — Uy |” = Z — |ta|" < 0.
n=1 n= n

Let (p,,) be a sequence of positive numbers such that

Pn:va—M)o asn—oo, (Py=p;=0i>1).
v=0

The sequence-to-sequence transformation

1 n
Z’Vl - Pn ;pvsv
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defines the sequence,) of the (N,pn) mean of the sequengs, ) generated by the sequence
of coefficients(p,,) (see[6]). The serie§_ a, is said to be summabl|elV,pn o k> 1, if (see

[3])
0o k—1
Z(Pn) \zn—zn,l\k<oo.

=1 \Pn

In the special casg, = 1 for all values ofn (resp. £k = 1), then \N,pn\k summability is
1

the same a$C, 1|, (resp. |N, p,|) summability. Also if we takep, = -5, then|N, p,
summability reduces taV, 15| summability.

Mazhar [7] has proved the following theorem for summability factors by ushogiasi-
monotone sequences.

Theorem 1.1.Let A\, — 0 asn — oo. Suppose that there exists a sequence of numbers
(A;,) such that it isé-quasi-monotone with  nd, logn < oo, > A, logn is convergent and
AN, | < |A,| forall n. If

x

"1
Z —|t,|" = O (logm) as m — o,
n
n=1
then the serie$  a,, A, is summableC, 1|,, k > 1.

Later on Bor[[4] generalized Theor¢m 1.1 folra, p,
form.

Theorem 1.2.Let\,, — 0 asn — oo and let(p,,) be a sequence of positive numbers such that

|, summability method in the following

P, =0 (np,) asn — oo.

Suppose that there exists a sequence of numbgrs such that it isj-quasi-monotone with
> nd, X, < oo, Y. A, X, is convergent antA )\, | < |A,| for all n. If

S P = 0(X,) s oo,
n=1""

where(X,,) is a positive increasing sequence, then the se¥ies, \, is summabIQN,pn
k> 1.

It should be noted that if we tak¥,, = logn andp,, = 1 for all values ofn in Theorenm 1.p,
then we get Theorem 1.1.

It

2. THE MAIN RESULT.

Due to the restrictior, = O (np,) on (p,) , no result forp, = #1 can be deduced from
Theorenj 1.R. Therefore the aim of this paper is to prove Thepregm 1.2 under weaker conditions
and in a more general form without this condition. For this we need the concept of almost
increasing sequence. A positive sequeftg is said to be almost increasing if there exists a
positive increasing sequen¢e,) and two positive constantd and B such thatdc,, < d,, <
Be, (seel[1]). Obviously, every increasing sequence is almost increasing but the converse need
not be true as can be seen from the exardple: ne(~"". Since(X,,) is increasing in Theorem
[1.2, we are weakening the hypotheses of the theorem by replacing the increasing sequence with
an almost increasing sequence.

Now, we shall prove the following theorem.
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Theorem 2.1.Let(X,,) be an almost increasing sequence and— 0 asn — oco. Suppose that
there exists a sequence of numblets) such that it isf-quasi-monotone with _ nd, X, < oo,
> A, X, is convergent antA ), | < |A,| for all n. If

m

Sl = o),

n=1

|

Y —lta* = O(Xy) asm — oo
n

n=1

and

m

];—" It.|" = O (X,,) asm — oo,

n=1""

then the seried_ a, )\, is summabléN,pnh, k> 1.

We need the following lemmas for the proof of our theorem.
Lemma 2.2. Under the conditions of the theorem, we have

IAn] Xn =0 (1) as n — oc.
Proof. Since)\,, — 0 asn — oo, we have that

v=n

o] X, = X, gxni|mv| giXU|A)\U| giXU|AU| < .
v=0

v=n v=0

Hence|\,| X, = O (1) asn — oc. O

Lemma 2.3. Let (X,,) be an almost increasing sequence.(4f,) is d-quasi-monotone with
> no, X, < o0, > A, X, is convergent, then

nA,X,=0(1),

ian |AA,| < 0.

n=1

The proof of Lemma@ 2|3 is similar to the proof of Theorem 1 and Theorem 2 of Bbas [2, case
~v = 1], and hence is omitted.

3. PROOF OF THE THEOREM

Proof of Theorerf 2]1Let (7;,) denote thg N, p,) mean of the serie}_ a,\,. Then, by defi-
nition and changing the order of summation, we have

Tn = Pizpvzaz)\z = PLZ(Pn_Pv—l)av)\v-
" v=0 =0 " v=0

Then, forn > 1, we have

n n
Py
Tn — Tn,1 = P Z Pv,lav)\v P Z Y Ul UUCLU.
n—1 =1

PP " PP,

v=1
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By Abel’s transformation, we get

n+1
T, —Th 1= ntnAn —
1 np, — P

v+1

v+1
tv Ay E Pt, A\,
v PPnl

1
Z Pvtv)\v+1; = Ina + Tn,2 + Tn,3 + Tn,47 say.
=1
Since

(T + Tz + T+ Toal* < 4% (Tt [Tl + 1 Tsl* + [Toal")

to complete the proof of the theorem, it is enough to show that

© /p o\l
> (—") T, |" < 0o forr=1,2,3,4.

n=1 n

Since)\, is bounded by the hypothesis, we have that

(P k  Pn k—1
s T, = 01 — |tal” | Al A0
S () mal = oW Bl
- Dn
= 0 B i
- OW YA Bl + OIS B

= 0(1) ) [AMN[ Xy + O (1) [An| Xn

= 0O(1) | A, Xn + O (1) [\ Xin = O (1) as m — oo,

3
Il
—_

by virtue of the hypotheses of the theorem and Lernmja 2.2.
Now, whenk > 1, applying Holder’s inequality, as iy, ;, we have that

n

m+1 P, k—1 i m+1 1 n—1 k-1
> () mal - 0<1>prnlzpv|t| 2 {Pzp}

n=2
m+1
_ k—1 n
= Zm!tHMIM ZPPM
n=v+1
= O()Z\)\| \z\ O (1) asm — oo.
v=1
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Again we have that,

m+1 k—1
P,

3 (—) Tl
DPn

n=2

m+1 p 1 n—1 k-1
m—+1
ZP /14, Z 5
n=v+1
O (1)) t]" Ay
v=1
m 1 .
O)Y vl - It
v=1
m—1 v
O (1) A(levl)Z ] + O (1) m|A,, IZ tu*
v=1 i=1
m—1
O1) ) [AW[ADIXo +O (1) m|An| X
v=1
m—1 m—1
0(1) S v[AAIX, +0 (1) 3 [Aui| Xoss + 0 (1) m | A X,
v=1 v=1

O (1) asm — oo,

in view of the hypotheses of Theor¢ém|2.1 and Lemimé 2.3.
Finally, we get that

m+1 k—1
by
> ()

n=2 n

IN

il n—l -1 k-1
ZPP 1ZPHI |Av+1|—><{ Z |)\v+1|—}

n=2
m+1

ZP ol sl S0 5

n=v+1
k
DY Pl Lt

v=1

m—1
A|>‘v+1|z " +0(1 IAm+1|Z
1

m—1

O (1) Q1A 1] X1 + O (1) [Anga| Xinga

|)‘U+1| Xv+1 + O( ) |/\m+1‘ Xm+1 =0 (1) asm — oo,

v=1

by virtue of the hypotheses of Theorém|2.1 and Lerpmia 2.2.

Therefore we get

m

(

This completes the proof of the theorem.

b,

Pn

k—1
) T,.]" =0(1) asm — oo, forr=1,2,3,4.
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If we takep,, = 1 for all values ofn (resp.p, = ﬁ), then we get a result concerning the
|C, 1], (resp.| N, 15| ,) summability factors.
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