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ABSTRACT. Some Hardy type inequalities on the domain in the Heisenberg group are estab-
lished by using the Picone type identity and constructing suitable auxiliary functions.
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1. INTRODUCTION

The Hardy inequality in the Euclidean space (see [3], [4], [7]) has been established using
many methods. IriJ1], Allegretto and Huang found a Picone’s identity fopthaplacian and
pointed out that one can prove the Hardy inequality via the identity. Niu, Zhang and Wang in
[6] obtained a Picone type identity for thhesub-Laplacian in the Heisenberg group and then es-
tablished a Hardy type inequality. Whenr= 2, the result of[[6] coincides with the inequality in
[2]. As stated in[[1], the Picone type identity allows us to avoid postulating regularity conditions
on the boundary of the domain under consideration. Since there is a presence of characteristic
points in the sub-Laplacian Dirichlet problem in the Heisenberg group/(5ee [2]), we understand
that such an identity is especially useful.

We recall that the Heisenberg groy, of real dimensionN = 2n + 1, n € N, is the
nilpotent Lie group of step two whose underlying manifoldRs"*'. A basis for the Lie
algebra of left invariant vector fields dt,, is given by

0 0 0

0
Xi=—+2y—, Y, =——-20,— =1,2,...,n.
J ax] _|_ y]at’ J ayj x]at7 j )y < 7n
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The number) = 2n + 2 is the homogeneous dimension&f,. There exists a Heisenberg
distance

A (20, ) = {[w=a P+ =) + [t =t = 2a-y =o' -y)}
betweenz,¢) and(z/,t'). We denote the Heisenberg gradient by
Vi, = (X1,..., X, Y1,....Y,,).

In this note we give some Hardy type inequalities on the domain in the Heisenberg group by
considering different auxiliary functions.

Ll

2. HARDY INEQUALITIES
First we state two lemmas given in [6] which will be needed in the sequel.

Lemma 2.1. LetQ) be a domain irH,,, v > 0, u > 0 be differentiable irf2. Then
(2.1) L(u,v) = R(u,v) > 0,

where
p—1

uP W _
L(u,v) = [V, ul’ + (p = 1) 2 IVa, 0" = p Vi, - [V, of” *Vi,v,

up

R(’U,,U) = |VHnU|p —Vu, ( 1) . ’anU|p72anU.

VP~
Denote thep-sub-Laplacian by\ g, ,v = Vg, - (V0[P "2V, v).

Lemma 2.2. Assume that the differentiable function> 0 satisfies the conditior- Ay, ,v >
AgvP~t, for some\ > 0 and nonnegative function Then for every, € C5°(2), u > 0,

(2.2) [1waalr = [ glu
Q Q

Let B = {(z,t) € H,|d((2,1),(0,0)) < R} be the Heisenberg group andz,t) =
dist ((z,t),0BR), (2,t) € Bg, in the sense of distance functions on the Heisenberg group.

Theorem 2.3.LetQ2 = Bi\{(0,0}, p > 1. Then for every. € C§°(£2),

—1 |2 [P |ul?
(2.3) /’VHH P > (—) T
where|z| = /22 + 42, d = d ((z,1),(0,0)) .

Proof. We first consider: > 0. The following equations are evident:
Xjd =d 7 (|2|*z; +y;t), Yyd = d=° (|2[y; — 5t)

(2.4) X2d = —3d7 (|2[z; + y;t)° + d 3 (|2 + 222 + 2¢2) ,
Vid=—3d""(|z|*y; — zt) 4+ d 3 (|2 + 20242y2), j=1,...,n

and

(2.5) Vg, d = |zld™!, Ap,d=(Q—1)d’z>.

Choosev(z,t) = d(2,t)’ = (R — d)°, in which 3 = 21, one has
Xjv=—-B6"1X;d, Yyu=-B5""1Y;d, j=1,...,n,
Vi, v =—=B6""Vy,d, |V, =1816""z[d",

J. Inequal. Pure and Appl. Math4(5) Art. 103, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SOME HARDY TYPE INEQUALITIES IN THE HEISENBERG GROUP 3

and
_AHHU = _an . (’VHHU’I)iQVHnU)
=-Vy, - (—B!ﬁ]p_Qé(ﬁ_l)(p_l)\z|p_2d2_pVHnd)
= ﬁer{ — (8= 1)(p— 1) DD 2P|V df?

N AV (|z|p_2) -V, d
+ (2 _ p)5(ﬂ‘1)(”_1)|z|p_2d1_p|VHnd|2

4 DD 2 g2r A d}'
From the facV g, (|2[P~2) Vi, d = (p—2)|z|P~4d73|2|* = (p—2)|2|Pd~3 and [2.5), it follows
that
~B,0 = 916P=2{ = (5= (o~ DI

+ (p — 2)5(ﬂ*1)(p71)|2’pd717p
—(p— 2)5(5—1)(p—1)|z|pd—1—p

+(Q — 1)5(ﬁ1)(p1)|z’pd1p}

— 362 {—(ﬁ ~Dp-1)+(Q- 1>§} B

p—1\""(p—-1 5 |zPoPt
— (2= £—- _pellErr
() {5 e 55
> p—1 pmvpil.
- P ar or

The desired inequality (2.3) is obtained by Lenimd 2.2. For geneta} lettingu = u* — u™,
we directly obtain[(2]3). O

Theorem 2.4.LetQ) = H,\{Bu, r}, @ > p > 1. Then for every, € C5°(12), there exists a
constantC' > 0, such that

N/ p -

Proof. Suppose that. > 0. Takev = log (£)", R < d = d((2,1),(0,0)) < 400, a < 0.
Using (2.4) and[(2]5) show that

R\® [d\*“'1 o

Vi, v = |o]|2]d?,
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~Ap,v =V, (Va0 *Vg,v)
= —a|alP?Vy, - (|2[P2d 20727V, d)

= —Oz|a|p_2{(p =222y, (J2]) - Vi, d
+ (22— p) = 1) [z a0 P |V, d

+ 2P 2P Ay d}.
SinceVy, (|z]) - Vu,d = |z|>d 3, the last equation above becomes
2,0 = —alap{ (- e s
+ (3 = 2p)|2[P2d21 P z|?d 2

Q- 1>|zr“d“p\z|2d3}

= —ala["?zPd P (p—2+3-2p+Q — 1)

2.7) = —alaP2(Q — p)|=lPd .
Noting
vt
dEIJPoo dar _O’

L

there exists a positive numbgf > R, such that”f;—;1 < 1,ford > M. Since“_- is continuous

on the intervallR, M|, we find a constan€’ > 0, such that”’c’l—;1 < C'. Pick outC” =
max{C’, 1} and one has?~! < C”d? in Q. This leads to the following

2fp ot
_AH,LU Z C% dp s

whereC = =2l 7(9=r) ‘and to ) by Lemm@.z. A similar treatment for generabm-
pletes the proof. O

In particular,a = p — @ (1 < p < Q) satisfies the assumption in the proof above.

Theorem 2.5. Let 2 be as defined in Theordm P.4 apd> @). Then there exists a constant
C > 0, such that for every, € C5°(12),

|ul”

) 2P
(2.8) | narzc | e (O

Proof. It is sufficient to show thaf (2|8) holds for > 0. Choosev = ¢°, ¢ = log £, where
R < d < 400, 0 < a < 1. We know that from[(2}4) andl (2.5),

Vi, ¢ =d 'Vi,d, |Vu,o| =d?|z],
AHn¢ = d_lAHnd — d_2|and|2 = (Q - 2)|Z‘2d_4.
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This allows us to obtain
—Ap,v ==V, (Vv *Vg,v)
= —Vng, - (|a¢* ' Vi, 0[P *a¢* 'V, o)
P2 (qb(a_l)(p_l)|z|”_2d2(2_p)VH 9)

= —a|a

= —Oélal”_Q{(a —1)(p — D)l VD= p22CP) vy g)?
+(p—2)0 VOV P3PPIV Y (|2]) - Vi, ¢
+ 2(2 _ p)¢(a—1)(p—1)‘2|p—2d2(2—p)—1and -V, o

+ ¢(a—1)(p—1) |z|p_2d2(2_p)AHn¢}

= —ala = (a = 1)(p = 1oV

+ (p _ 2)¢(a*1)(p71) ’Z’p*3d2(2*p) ’Z‘Sdle
+2(2 — p)¢(a—1)(p—1)|Z|p—2d2(2—p)—1|Z|2d—3

+ ¢(a*1)(p71)‘Z|p72d2(27p)(Q _ 2)|z[2d4}

= —alal 2 B (- ) - ) + (- 20+ 22~ Do+ @ - 20)
L - ve- 0+ @t

Taking into account thab < o < 1 andp > @, we have
—alaP~4(Q = p)o >0,

= —alalf?

and therefore

_ Pl 2)P P 2|P
~Ap,v > —alalP(a = 1)(p - 1) O @
whereC' = —alalP~?(a — 1)(p — 1). An application of Lemma 2|2 completes the proof of
Theorem 2.b. O
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