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1. I NTRODUCTION

For

f ∈ Cγ[0,∞) ≡ {f ∈ C[0,∞) : |f(t)| ≤Mtγ

for someM > 0, γ > 0} we consider a certain type of Baskakov-Durrmeyer operator as

Bn(f(t), x) =
∞∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)f(t)dt+ (1 + x)−nf(0)(1.1)

=

∫ ∞

0

Wn(x, t)f(t)dt

where

pn,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
,

bn,k(t) =
1

B(n+ 1, k)
· tk−1

(1 + t)n+k+1

and

Wn(x, t) =
∞∑

k=1

pn,k(x)bn,k(t) + (1 + x)−nδ(t),

δ(t) being the Dirac delta function. The norm-|| · ||γ on the classCγ[0,∞) is defined as
||f ||γ = sup

0≤t<∞
|f(t)|t−γ.

The operators defined by (1.1) are the integral modification of the well known Baskakov
operators with weight functions of some Beta basis functions. Very recently Finta [2] also
studied some other approximation properties of these operators. The behavior of these operators
is very similar to the operators recently introduced in [6], [9] and also studied in [8]. These
operators reproduce not only the constant functions but also the linear functions, which is the
interesting property of such operators. The other usual Durrmeyer type integral modification
of the Baskakov operators [5] reproduce only the constant functions, so one can not apply the
iterative combinations easily to improve the order of approximation for the usual Baskakov
Durrmeyer operators. For recent work in this area we refer to [7]. In the present paper we study
some direct results which include pointwise convergence, asymptotic formula, error estimation
and inverse theorem in the simultaneous approximation for the unbounded functions of growth
of ordertγ.

2. BASIC RESULTS

In this section we mention certain lemmas which will be used in the sequel.

Lemma 2.1([3]). For m ∈ N ∪ {0}, if themth order moment be defined as

Un,m(x) =
∞∑

k=0

pn,k(x)

(
k

n
− x

)m

,

thenUn,0(x) = 1, Un,1(x) = 0 and

nUn,m+1(x) = x(1 + x)(U (1)
n,m(x) +mUn,m−1(x)).

Consequently we haveUn,m(x) = O
(
n−[(m+1)/2]

)
.
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Lemma 2.2. Let the functionTn,m(x),m ∈ N ∪ {0}, be defined as

Tn,m(x) = Bn

(
(t− x)mx

)
=

∞∑
k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)mdt+ (1 + x)−n(−x)m.

ThenTn,0(x) = 1, Tn,1 = 0, Tn,2(x) = 2x(1+x)
n−1

and also there holds the recurrence relation

(n−m)Tn,m+1(x) = x(1 + x)
⌊
T (1)

n,m(x) + 2mTn,m−1(x)
⌋

+m(1 + 2x)Tn,m(x).

Proof. By definition, we have

T (1)
n,m(x) =

∞∑
k=1

p
(1)
n,k(x)

∫ ∞

0

bn,k(t)(t− x)mdt

−m
∞∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)m−1dt

− n(1 + x)−n−1(−x)m −m(1 + x)−n(−x)m−1.

Using the identities

x(1 + x)p
(1)
n,k(x) = (k − nx)pn,k(x)

and

t(1 + t)b
(1)
n,k(t) = [(k − 1)− (n+ 2)t]bn,k(t),

we have

x(1 + x)
[
T (1)

n,m(x) +mTn,m−1(x)
]

=
∞∑

k=1

pn,k(x)

∫ ∞

0

(k − nx)bn,k(t)(t− x)mdt+ n(1 + x)−n(−x)m+1

=
∞∑

k=1

pn,k(x)

∫ ∞

0

[
(k − 1)− (n+ 2)t+ (n+ 2)(t− x)

+ (1 + 2x)
]
bn,k(t)(t− x)mdt+ n(1 + x)−n(−x)m+1

=
∞∑

k=1

pn,k(x)

∫ ∞

0

t(1 + t)b
(1)
n,k(t)(t− x)mdt

+ (n+ 2)[Tn,m+1(x)− (1 + x)−n(−x)m+1]

+ (1 + 2x)[Tn,m(x)− (1 + x)−n(−x)m] + n(1 + x)−n(−x)m+1

= −(m+ 1)(1 + 2x)[Tn,m(x)− (1 + x)−n(−x)m]

− (m+ 2)[Tn,m+1 − (1 + x)−n(−x)m+1]

−mx(1 + x)[Tn,m−1(x)− (1 + x)−n(−x)m−1]

+ (n+ 2)[Tn,m+1 − (1 + x)−n(−x)m+1]

+ (1 + 2x)[Tn,m(x)− (1 + x)−n(−x)m] + n(1 + x)−n(−x)m+1.

Thus, we get

(n−m)Tn,m+1(x) = x(1 + x)[T (1)
n,m(x) + 2mTn,m−1(x)] +m(1 + 2x)Tn,m(x).
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This completes the proof of recurrence relation. From the above recurrence relation, it is easily
verified for allx ∈ [0,∞) that

Tn,m(x) = O
(
n−[(m+1)/2]

)
.

�

Remark 2.3. It is easily verified from Lemma 2.1 that for eachx ∈ (0,∞)

Bn(ti, x) =
(n+ i− 1)!(n− i)!

n!(n− 1)!
xi + i(i− 1)

(n+ i− 2)!(n− i)!

n!(n− 1)!
xi−1 +O(n−2).

Corollary 2.4. Let δ be a positive number. Then for everyγ > 0, x ∈ (0,∞), there exists a
constantM(s, x) independent ofn and depending ons andx such that∥∥∥∥∫

|t−x|>δ

Wn(x, t)tγdt

∥∥∥∥
C[a,b]

≤M(s, x)n−s, s = 1, 2, 3, . . .

Lemma 2.5. There exist the polynomialsQi,j,r(x) independent ofn andk such that

{x(1 + x)}rDr
[
pn,k(x)

]
=
∑

2i+j≤r
i,j≥0

ni(k − nx)jQi,j,r(x)pn,k(x),

whereD ≡ d
dx
.

By C0, we denote the class of continuous functions on the interval(0,∞) having a compact
support andCr

0 is the class ofr times continuously differentiable functions withCr
0 ⊂ C0. The

functionf is said to belong to the generalized Zygmund classLiz(α, 1, a, b), if there exists a
constantM such thatω2(f, δ) ≤Mδα, δ > 0,whereω2(f, δ) denotes the modulus of continuity
of 2nd order on the interval[a, b]. The classLiz(α, 1, a, b) is more commonly denoted by
Lip∗(α, a, b). SupposeG(r) = {g : g ∈ Cr+2

0 , supp g ⊂ [a′, b′] where[a′, b′] ⊂ (a, b)}. For r
times continuously differentiable functionsf with supp f ⊂ [a′, b′] the Peetre’s K-functionals
are defined as

Kr(ξ, f) = inf
g∈G(r)

[∥∥f (r) − g(r)
∥∥

C[a′,b′]
+ ξ

{∥∥g(r)
∥∥

C[a′,b′]
+
∥∥g(r+2)

∥∥
C[a′,b′]

}]
, 0 < ξ ≤ 1.

For0 < α < 2, Cr
0(α, 1, a, b) denotes the set of functions for which

sup
0<ξ≤1

ξ−α/2Kr(ξ, f, a, b) < C.

Lemma 2.6. Let 0 < a′ < a′′ < b′′ < b′ < b < ∞ and f (r) ∈ C0 with supp f ⊂ [a′′, b′′]
and if f ∈ Cr

0(α, 1, a
′, b′), we havef (r) ∈ Liz(α, 1, a′, b′) i.e. f (r) ∈ Lip∗(α, a′, b′) where

Lip∗(α, a′, b′) denotes the Zygmund class satisfyingKr(δ, f) ≤ Cδα/2.

Proof. Let g ∈ G(r), then forf ∈ Cr
0(α, 1, a

′, b′), we have∣∣42
δf

(r)(x)
∣∣ ≤ ∣∣42

δ(f
(r) − g(r))(x)

∣∣+ ∣∣42
δg

(r)(x)
∣∣

≤
∥∥42

δ(f
(r) − g(r))

∥∥
C[a′,b′]

+ δ2
∥∥g(r+2)

∥∥
C[a′,b′]

≤ 4M1Kr(δ
2, f) ≤M2δ

α.

�

Lemma 2.7. If f is r times differentiable on[0,∞), such thatf (r−1) = O(tα), α > 0 ast→∞,
then forr = 1, 2, 3, . . . andn > α+ r we have

B(r)
n (f, x) =

(n+ r − 1)!(n− r)!

n!(n− 1)!

∞∑
k=0

pn+r,k(x)

∫ ∞

0

bn−r,k+r(t)f
(r)(t)dt.
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Proof. First

B(1)
n (f, x) =

∞∑
k=1

p
(1)
n,k(x)

∫ ∞

0

bn,k(t)f(t)dt− n(1 + x)−n−1f(0).

Now using the identities

p
(1)
n,k(x) = n[pn+1,k−1(x)− pn+1,k(x)],(2.1)

b
(1)
n,k(t) = (n+ 1)[bn+1,k−1(t)− bn+1,k(t)].(2.2)

for k ≥ 1, we have

B(1)
n (f, x) =

∞∑
k=1

n[pn+1,k−1(x)− pn+1,k(x)]

∫ ∞

0

bn,k(t)f(t)dt− n(1 + x)−n−1f(0)

= npn+1,0(x)

∫ ∞

0

bn,1(t)f(t)dt− n(1 + x)−n−1f(0)

+ n
∞∑

k=1

pn+1,k(x)

∫ ∞

0

[bn,k+1(t)− bn,k(t)]f(t)dt

= n(1 + x)−n−1

∫ ∞

0

(n+ 1)(1 + t)−n−2f(t)dt− n(1 + x)−n−1f(0)

+ n
∞∑

k=1

pn+1,k(x)

∫ ∞

0

− 1

n
b
(1)
n−1,k+1(t)f(t)dt.

Integrating by parts, we get

B(1)
n (f, x) = n(1 + x)−n−1f(0) + n(1 + x)−n−1

∫ ∞

0

(1 + t)−n−1f (1)(t)dt

− n(1 + x)−n−1f(0) +
∞∑

k=1

pn+1,k(x)

∫ ∞

0

bn−1,k+1(t)f
(1)(t)dt

=
∞∑

k=0

pn+1,k(x)

∫ ∞

0

bn−1,k+1(t)f
(1)(t)dt.

Thus the result is true forr = 1. We prove the result by induction method. Suppose that the
result is true forr = i, then

B(i)
n (f, x) =

(n+ i− 1)!(n− i)!

n!(n− 1)!

∞∑
k=0

pn+i,k(x)

∫ ∞

0

bn−i,k+i(t)f
(i)(t)dt.

Thus using the identities (2.1) and (2.2), we have

B(i+1)
n (f, x)

=
(n+ i− 1)!(n− i)!

n!(n− 1)!

∞∑
k=1

(n+ i)[pn+i+1,k−1(x)− pn+i+1,k(x)]

∫ ∞

0

bn−i,k+i(t)f
(i)(t)dt

+
(n+ i− 1)!(n− i)!

n!(n− 1)!
(−(n+ i)(1 + x)−n−i−1)

∫ ∞

0

bn−i,i(t)f
(i)(t)dt
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=
(n+ i)!(n− i)!

n!(n− 1)!
pn+i+1,0(x)

∫ ∞

0

bn−i,i+1(t)f
(i)(t)dt

− (n+ i)!(n− i)!

n!(n− 1)!
pn+i+1,0(x)

∫ ∞

0

bn−i,i(t)f
(i)(t)dt

+
(n+ i)!(n− i)!

n!(n− 1)!

∞∑
k=1

pn+i+1,k(x)

∫ ∞

0

[bn−i,k+i+1(t)− bn−i,k+i(t)]f
(i)(t)dt

=
(n+ i)!(n− i)!

n!(n− 1)!
pn+i+1,0(x)

∫ ∞

0

− 1

(n− i)
b
(1)
n−i−1,i+1(t)f

(i)(t)dt

+
(n+ i)!(n− i)!

n!(n− 1)!

∞∑
k=1

pn+i+1,k(x)

∫ ∞

0

− 1

(n− i)
b
(1)
n−i−1,k+i+1(t)f

(i)(t)dt.

Integrating by parts, we obtain

B(i+1)
n (f, x) =

(n+ i)!(n− i− 1)!

n!(n− 1)!

∞∑
k=0

pn+i+1,k(x)

∫ ∞

0

bn−i−1,k+i+1(t)f
(i+1)(t)dt.

This completes the proof of the lemma. �

3. DIRECT THEOREMS

In this section we present the following results.

Theorem 3.1.Letf ∈ Cγ[0,∞) andf (r) exists at a pointx ∈ (0,∞). Then we have

B(r)
n (f, x) = f (r)(x)

asn→∞.

Proof. By Taylor expansion off , we have

f(t) =
r∑

i=0

f (i)(x)

i!
(t− x)i + ε(t, x)(t− x)r,

whereε(t, x) → 0 ast→ x. Hence

B(r)
n (f, x) =

∫ ∞

0

W (r)
n (t, x)f(t)dt

=
r∑

i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt+

∫ ∞

0

W (r)
n (t, x)ε(t, x)(t− x)rdt

=: R1 +R2.

First to estimateR1, using the binomial expansion of(t− x)i and Remark 2.3, we have

R1 =
r∑

i=0

f (i)(x)

i!

i∑
v=0

(
i

v

)
(−x)i−v ∂

r

∂xr

∫ ∞

0

Wn(t, x)tvdt

=
f (r)(x)

r!

dr

dxr

[
(n+ r − 1)!(n− r)!

n!(n− 1)!
xr + terms containing lower powers ofx

]
= f (r)(x)

[
(n+ r − 1)!(n− r)!

n!(n− 1)!

]
→ f (r)(x)
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asn→∞. Next applying Lemma 2.5, we obtain

R2 =

∫ ∞

0

W (r)
n (t, x)ε(t, x)(t− x)rdt,

|R2| ≤
∑

2i+j≤r
i,j≥0

ni |Qi,j,r(x)|
{x(1 + x)}r

∞∑
k=1

|k − nx|jpn,k(x)

∫ ∞

0

bn,k(t)|ε(t, x)||t− x|rdt+
(n+ r + 1)!

(n− 1)!
(1 + x)−n−r|ε(0, x)|xr.

The second term in the above expression tends to zero asn → ∞. Sinceε(t, x) → 0 ast → x
for a givenε > 0 there exists aδ such that|ε(t, x)| < ε whenever0 < |t − x| < δ. If
α ≥ max{γ, r}, whereα is any integer, then we can find a constantM3 > 0, |ε(t, x)(t−x)r| ≤
M3|t− x|α, for |t− x| ≥ δ. Therefore

|R2| ≤M3

∑
2i+j≤r
i,j≥0

ni

∞∑
k=0

pn,k(x)|k − nx|j

×
{
ε

∫
|t−x|<δ

bn,k(t)|t− x|rdt+

∫
|t−x|≥δ

bn,k(t)|t− x|αdt
}

=: R3 +R4.

Applying the Cauchy-Schwarz inequality for integration and summation respectively, we obtain

R3 ≤ εM3

∑
2i+j≤r
i,j≥0

ni

{
∞∑

k=1

pn,k(x)(k − nx)2j

} 1
2
{

∞∑
k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)2rdt

} 1
2

.

Using Lemma 2.1 and Lemma 2.2, we get

R3 = ε ·O(nr/2)O(n−r/2) = ε · o(1).

Again using the Cauchy-Schwarz inequality, Lemma 2.1 and Corollary 2.4, we get

R4 ≤M4

∑
2i+j≤r
i,j≥0

ni

∞∑
k=1

pn,k(x)|k − nx|j
∫
|t−x|≥δ

bn,k(t)|t− x|αdt

≤M4

∑
2i+j≤r
i,j≥0

ni

∞∑
k=1

pn,k(x)|k − nx|j
{∫

|t−x|≥δ

bn,k(t)dt

} 1
2
{∫

|t−x|≥δ

bn,k(t)(t− x)2αdt

} 1
2

≤M4

∑
2i+j≤r
i,j≥0

ni

{
∞∑

k=1

pn,k(x)(k − nx)2j

} 1
2
{

∞∑
k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)2αdt

} 1
2

=
∑

2i+j≤r
i,j≥0

niO(nj/2)O(n−α/2) = O(n(r−α)/2) = o(1).

Collecting the estimates ofR1 −R4, we obtain the required result. �

Theorem 3.2.Letf ∈ Cγ[0,∞). If f (r+2) exists at a pointx ∈ (0,∞). Then

lim
n→∞

n
[
B(r)

n (f, x)− f (r)(x)
]

= r(r − 1)f (r)(x) + r(1 + 2x)f (r+1)(x) + x(1 + x)f (r+2)(x).
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Proof. Using Taylor’s expansion off, we have

f(t) =
r+2∑
i=0

f (i)(x)

i!
(t− x)i + ε(t, x)(t− x)r+2,

whereε(t, x) → 0 ast → x andε(t, x) = O((t − x)γ), t → ∞ for γ > 0. Applying Lemma
2.2, we have

n
[
B(r)

n (f(t), x)− f (r)(x)
]

= n

[
r+2∑
i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (t, x)(t− x)idt− f (r)(x)

]

+ n

∫ ∞

0

W (r)
n (t, x)ε(t, x)(t− x)r+2dt

=: E1 + E2.

First, we have

E1 = n
r+2∑
i=0

f (i)(x)

i!

i∑
j=0

(
i

j

)
(−x)i−j

∫ ∞

0

W (r)
n (t, x)tjdt− nf (r)(x)

=
f (r)(x)

r!
n
[
B(r)

n (tr, x)− (r!)
]
+
f (r+1)(x)

(r + 1)!
n
[
(r + 1)(−x)B(r)

n (tr, x) +B(r)
n (tr+1, x)

]
+
f (r+2)(x)

(r + 2)!
n

[
(r + 2)(r + 1)

2
x2B(r)

n (tr, x) + (r + 2)(−x)B(r)
n (tr+1, x) +B(r)

n (tr+2, x)

]
.

Therefore, by Remark 2.3, we have

E1 = nf (r)(x)

[
(n+ r − 1)!(n− r)!

n!(n− 1)!
− 1

]
+
nf (r+1)(x)

(r + 1)!

[
(x− 1)(−x)

{
(n+ r − 1)!(n− r)!

n!(n− 1)!

}
+

{
(n+ r)!(n− r − 1)!

n!(n− 1)!
(r + 1)!x+ (r + 1)r

(n+ r − 1)!(n− r − 1)!

n!(n− 1)!
r!

}
+
nf (r+2)(x)

(r + 2)!

[
(r + 2)(r + 1)

2
x2 (n+ r − 1)!(n− r)!

n!(n− 1)!
r!

]
+ (r + 2)(−x)

{
(n+ r)!(n− r − 1)!

2
x(r + 1)! + (r + 1)r

(n− r − 1)!(n− r − 1)!

n!(n− 1)!
r!

}
+

{
(n+ r + 1)!(n− r − 2)!

n!(n− 1)!

(r + 2)!

2
x2

+ (r + 2)(r + 1)
(n+ r)!(n− r − 2)!

n!(n− 1)!
(r + 1)!x

}]
+O(n−2).

In order to complete the proof of the theorem it is sufficient to show thatE2 → 0 asn → ∞
which easily follows proceeding along the lines of the proof of Theorem 3.1 and by using
Lemma 2.1, Lemma 2.2 and Lemma 2.5. �
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Lemma 3.3. Let 0 < α < 2, 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If f ∈ C0 with

supp f ⊂ [a′′, b′′] and
∥∥∥B(r)

n (f, ·)− f (r)
∥∥∥

C[a,b]
= O(n−α/2), then

Kr(ξ, f) = M5

{
n−α/2 + nξKr(n

−1, f)
}
.

ConsequentlyKr(ξ, f) ≤M6ξ
α/2,M6 > 0.

Proof. It is sufficient to prove

Kr(ξ, f) = M7{n−α/2 + nξKr(n
−1, f)},

for sufficiently largen. Becausesupp f ⊂ [a′′, b′′] therefore by Theorem 3.2 there exists a
functionh(i) ∈ G(r), i = r, r + 2, such that∥∥B(r)

n (f, •)− h(i)
∥∥

C[a′,b′]
≤M8n

−1.

Therefore,

Kr(ξ, f) ≤ 3M9n
−1 +

∥∥B(r)
n (f, •)− f (r)

∥∥
C[a′,b′]

+ ξ
{∥∥B(r)

n (f, •)
∥∥

C[a′,b′]
+
∥∥B(r+2)

n (f, •)
∥∥

C[a′,b′]

}
.

Next, it is sufficient to show that there exists a constantM10 such that for eachg ∈ G(r)

(3.1)
∥∥B(r+2)

n (f, •)
∥∥

C[a′,b′]
≤M10n{

∥∥f (r) − g(r)
∥∥

C[a′,b′]
+ n−1

∥∥g(r+2)
∥∥

C[a′,b′]
.

Also using the linearity property, we have

(3.2)
∥∥B(r+2)

n (f, •)
∥∥

C[a′,b′]
≤
∥∥B(r+2)

n (f − g, •)
∥∥

C[a′,b′]
+
∥∥B(r+2)

n (g, •)
∥∥

C[a′,b′]
.

Applying Lemma 2.5, we get∫ ∞

0

∣∣∣∣ ∂r+2

∂xr+2
Wn(x, t)

∣∣∣∣ dt ≤ ∑
2i+j≤r+2

i,j≥0

∞∑
k=1

ni|k − nx|j |Qi,j,r+2(x)|
{x(1 + x)}r+2

× pn,k(x)

∫ ∞

0

bn,k(t)dt+
dr+2

dxr+2
[(1 + x)−n].

Therefore by the Cauchy-Schwarz inequality and Lemma 2.1, we obtain

(3.3)
∥∥B(r)

n (f − g, •)
∥∥

C[a′,b′]
≤M11n

∥∥f (r) − g(r)
∥∥

C[a′,b′]
,

where the constantM11 is independent off andg. Next by Taylor’s expansion, we have

g(t) =
r+1∑
i=0

g(i)(x)

i!
(t− x)i +

g(r+2)(ξ)

(r + 2)!
(t− x)r+2,

whereξ lies betweent andx. Using the above expansion and the fact that
∫∞

0
∂m

∂xmWn(x, t)(t−
x)idt = 0 for m > i, we get

(3.4)
∥∥B(r+2)

n (g, •)
∥∥

C[a′,b′]
≤M12

∥∥g(r+2)
∥∥

C[a′,b′]
·
∥∥∥∥∫ ∞

0

∂r+2

∂xr+2
Wn(x, t)(t− x)r+2dt

∥∥∥∥
C[a′,b′]

.
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Also by Lemma 2.5 and the Cauchy-Schwarz inequality, we have

E ≡
∫ ∞

0

∣∣∣∣ ∂r+2

∂xr+2
Wn(x, t)

∣∣∣∣ (t− x)r+2dt

≤
∑

2i+j≤r+2
i,j≥0

∞∑
k=1

nipn,k(x)|k − nx|j |Qi,j,r+2(x)|
{x(1 + x)}r+2

∫ ∞

0

bn,k(t)(t− x)r+2dt

+
dr+2

dxr+2
[(−x)r+2(1 + x)−n]

≤
∑

2i+j≤r+2
i,j≥0

|Qi,j,r+2(x)|
{x(1 + x)}r+2

(
∞∑

k=1

pn,k(x)(k − nx)2j

) 1
2

×

(
∞∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)2r+4dt

) 1
2 (∫ ∞

0

bn,k(t)dt

) 1
2

+
dr+2

dxr+2
[(−x)r+2(1 + x)−n]

=
∑

2i+j≤r+2
i,j≥0

ni |Qi,j,r+2(x)|
{x(1 + x)}r+2

O(nj/2)O
(
n−(1+ r

2)
)
.

Hence

(3.5) ||B(r+2)
n (g, •)||C[a′,b′] ≤M13||g(r+2)||C[a′,b′].

Combining the estimates of (3.2)-(3.5), we get (3.1). The other consequence follows form [1].
This completes the proof of the lemma. �

Theorem 3.4. Let f ∈ Cγ[0,∞) and suppose0 < a < a1 < b1 < b < ∞. Then for alln
sufficiently large, we have∥∥B(r)

n (f, •)− f (r)
∥∥

C[a1,b1]
≤ max

{
M14ω2

(
f (r), n−

1
2 , a, b

)
+M15n

−1‖f‖γ

}
,

whereM14 = M14(r),M15 = M15(r, f).

Proof. For sufficiently smallδ > 0, we define a functionf2,δ(t) corresponding tof ∈ Cγ[0,∞)
by

f2,δ(t) = δ−2

∫ δ
2

− δ
2

∫ δ
2

− δ
2

(
f(t)−∆2

ηf(t)
)
dt1dt2,

whereη = t1+t2
2
, t ∈ [a, b] and∆2

ηf(t) is the second forward difference off with step lengthη.
Following [4] it is easily checked that:

(i) f2,δ has continuous derivatives up to order2k on [a, b],
(ii) ‖f (r)

2,δ ‖C[a1,b1] ≤ M̂1δ
−rω2(f, δ, a, b),

(iii) ‖f − f2,δ‖C[a1,b1] ≤ M̂2ω2(f, δ, a, b),

(iv) ‖f2,δ‖C[a1,b1] ≤ M̂3‖f‖γ,

whereM̂i, i = 1, 2, 3 are certain constants that depend on[a, b] but are independent off and
n [4].
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We can write∥∥B(r)
n (f, •)− f (r)

∥∥
C[a1,b1]

≤
∥∥B(r)

n (f − f2,δ, •)
∥∥

C[a1,b1]
+
∥∥∥B(r)

n (f2,δ, •)− f
(r)
2,δ

∥∥∥
C[a1,b1]

+
∥∥∥f (r) − f

(r)
2,δ

∥∥∥
C[a1,b1]

=: H1 +H2 +H3.

Sincef (r)
2,δ =

(
f (r)
)
2,δ

(t), by property (iii) of the functionf2,δ, we get

H3 ≤ M̂4ω2(f
(r), δ, a, b).

Next on an application of Theorem 3.2, it follows that

H2 ≤ M̂5n
−1

r+2∑
j=r

∥∥∥f (j)
2,δ

∥∥∥
C[a,b]

.

Using the interpolation property due to Goldberg and Meir [4], for eachj = r, r + 1, r + 2, it
follows that ∥∥∥f (j)

2,δ

∥∥∥
C[a1,b1]

≤ M̂6

{
||f2,δ||C[a,b] +

∥∥∥f (r+2)
2,δ

∥∥∥
C[a,b]

}
.

Therefore by applying properties (iii) and (iv) of the of the functionf2,δ, we obtain

H2 ≤ M̂74 · n−1
{
||f ||γ + δ−2ω2(f

(r), δ)
}
.

Finally we shall estimateH1, choosinga∗, b∗ satisfying the conditions0 < a < a∗ < a1 < b1 <
b∗ < b <∞. Supposeψ(t) denotes the characteristic function of the interval[a∗, b∗], then

H1 ≤
∥∥B(r)

n (ψ(t)(f(t)− f2,δ(t)), •)
∥∥

C[a1,b1]

+
∥∥B(r)

n ((1− ψ(t))(f(t)− f2,δ(t)), •)
∥∥

C[a1,b1]

=: H4 +H5.

Using Lemma 2.7, it is clear that

B(r)
n

(
ψ(t)(f(t)− f2,δ(t)), x

)
=

(n+ r − 1)!(n− r)!

n!(n− 1)!

∞∑
k=0

pn+r,k(x)

∫ ∞

0

bn−r,k+r(t)ψ(t)(f (r)(t)− f
(r)
2,δ (t))dt.

Hence ∥∥B(r)
n (ψ(t)(f(t)− f2,δ(t)), •)

∥∥
C[a1,b1]

≤ M̂8

∥∥∥f (r) − f
(r)
2,δ

∥∥∥
C[a∗,b∗]

.

Next forx ∈ [a1, b1] andt ∈ [0,∞) \ [a∗, b∗], we choose aδ1 > 0 satisfying|t− x| ≥ δ1.
Therefore by Lemma 2.5 and the Cauchy-Schwarz inequality, we have

I ≡ B(r)
n ((1− ψ(t))(f(t)− f2,δ(t), x)

and

|I| ≤
∑

2i+j≤r
i,j≥0

ni |Qi,j,r(x)|
{x(1 + x)}r

∞∑
k=1

pn,k(x)|k − nx|j
∫ ∞

0

bn,k(t)(1− ψ(t))|f(t)− f2,δ(t)|dt

+
(n+ r − 1)!

(n− 1)!
(1 + x)−n−r(1− ψ(0))|f(0)− f2,δ(0)|.
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For sufficiently largen, the second term tends to zero. Thus

|I| ≤ M̂9||f ||γ
∑

2i+j≤r
i,j≥0

ni

∞∑
k=1

pn,k(x)|k − nx|j
∫
|t−x|≥δ1

bn,k(t)dt

≤ M̂9||f ||γδ−2m
1

∑
2i+j≤r
i,j≥0

ni

∞∑
k=1

pn,k(x)|k − nx|j
(∫ ∞

0

bn,k(t)dt

) 1
2
(∫ ∞

0

bn,k(t)(t− x)4mdt

) 1
2

≤ M̂9||f ||γδ−2m
1

∑
2i+j≤r
i,j≥0

ni

{
∞∑

k=1

pn,k(x)(k − nx)2j

} 1
2
{

∞∑
k=1

pn,k(x)

∫ ∞

0

bn,k(t)(t− x)4mdt

} 1
2

.

Hence by using Lemma 2.1 and Lemma 2.2, we have

I ≤ M̂10||f ||γδ−2m
1 O

(
n(i+ j

2
−m)
)
≤ M̂11n

−q||f ||γ,

whereq = m − r
2
. Now choosingm > 0 satisfyingq ≥ 1, we obtainI ≤ M̂11n

−1‖f‖γ.
Therefore by property (iii) of the functionf2,δ(t), we get

H1 ≤ M̂8

∥∥∥f (r) − f
(r)
2,δ

∥∥∥
C[a∗,b∗]

+ M̂11n
−1||f ||γ

≤ M̂12ω2(f
(r), δ, a, b) + M̂11n

−1||f |‖γ.

Choosingδ = n−
1
2 , the theorem follows. �

4. I NVERSE THEOREM

This section is devoted to the following inverse theorem in simultaneous approximation:

Theorem 4.1. Let 0 < α < 2, 0 < a1 < a2 < b2 < b1 < ∞ and supposef ∈ Cγ[0,∞). Then
in the following statements(i) ⇒ (ii)

(i) ||B(r)
n (f, •)||C[a1,b1] = O(n−α/2),

(ii) f (r) ∈ Lip∗(α, a2, b2),

whereLip∗(α, a2, b2) denotes the Zygmund class satisfyingω2(f, δ, a2, b2) ≤Mδα.

Proof. Let us choosea′, a′′, b′, b′′ in such a way thata1 < a′ < a′′ < a2 < b2 < b′′ < b′ < b1.
Also supposeg ∈ C∞0 with suppg ∈ [a′′, b′′] andg(x) = 1 on the interval[a2, b2]. Forx ∈ [a′, b′]
with D ≡ d

dx
, we have

B(r)
n (fg, x)− (fg)(r)(x)

= Dr(Bn((fg)(t)− (fg)(x)), x)

= Dr(Bn(f(t)(g(t)− g(x)), x)) +Dr(Bn(g(x)(f(t)− f(x)), x))

=: J1 + J2.
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Using the Leibniz formula, we have

J1 =
∂r

∂xr

∫ ∞

0

Wn(x, t)f(t)[g(t)− g(x)]dt

=
r∑

i=0

(r
i

)∫ ∞

0

W (i)
n (x, t)

∂r−i

∂xr−i
[f(t)(g(t)− g(x))]dt

= −
r−1∑
i=0

(r
i

)
g(r−i)(x)B(i)

n (f, x) +

∫ ∞

0

W (r)
n (x, t)f(t)(g(t)− g(x))dt

=: J3 + J4.

Applying Theorem 3.4, we have

J3 = −
r−1∑
i=0

(r
i

)
g(r−i)(x)f (i)(x) +O

(
n−

α
2

)
,

uniformly in x ∈ [a′, b′]. Applying Theorem 3.2, the Cauchy-Schwarz inequality, Taylor’s ex-
pansions off andg and Lemma 2.2, we are led to

J4 =
r∑

i=0

g(i)(x)f (r−i)(x)

i!(r − i)!
r! + o

(
n−

1
2

)
=

r∑
i=0

(r
i

)
g(i)(x)f (r−i)(x) + o

(
n−

α
2

)
,

uniformly in x ∈ [a′, b′]. Again using the Leibniz formula, we have

J2 =
r∑

i=0

(r
i

)∫ ∞

0

W (i)
n (x, t)

∂r−i

∂xr−i
[g(t)(f(t)− f(x))]dt

=
r∑

i=0

(r
i

)
g(r−i)(x)B(i)

n (f, x)− (fg)(r)(x)

=
r∑

i=0

(r
i

)
g(r−i)(x)f (i)(x)− (fg)(r)(x) + o(n−α/2)

= O
(
n−

α
2

)
,

uniformly in x ∈ [a′, b′]. Combining the above estimates, we get∥∥B(r)
n (fg, •)− (fg)(r)

∥∥
C[a′,b′]

= O
(
n−

α
2

)
.

Thus by Lemma 2.5 and Lemma 2.6, we have(fg)(r) ∈ Lip∗(α, a′, b′) also g(x) = 1 on
the interval[a2, b2], it proves thatf (r) ∈ Lip∗(α, a2, b2). This completes the validity of the
implication (i) ⇒ (ii) for the case0 < α ≤ 1. To prove the result for1 < α < 2 for any
interval [a∗, b∗] ⊂ (a1, b1), let a∗2, b

∗
2 be such that(a2, b2) ⊂ (a∗2, b

∗
2) and (a∗2, b

∗
2) ⊂ (a∗1, b

∗
1).

Letting δ > 0 we shall prove the assertionα < 2. From the previous case it implies thatf (r)

exists and belongs toLip(1 − δ, a∗1, b
∗
1). Let g ∈ C∞0 be such thatg(x) = 1 on [a2, b2] and

supp g ⊂ (a∗2, b
∗
2). Then withχ2(t) denoting the characteristic function of the interval[a∗1, b

∗
1],
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we have∥∥B(r)
n (fg, •)− (fg)(r)

∥∥
C[a∗2,b∗2]

≤ ||Dr[Bn(g(·)(f(t)− f(·)), •)]||C[a∗2,b∗2] + ||Dr[Bn(f(t)(g(t)− g(·)), •)]||C[a∗2,b∗2]

=: P1 + P2.

To estimateP1, by Theorem 3.4, we have

P1 =
∥∥Dr[Bn(g(·)(f(t), •)]− (fg)(r)

∥∥
C[a∗2,b∗2]

=

∥∥∥∥∥
r∑

i=0

(r
i

)
g(r−i)(·)B(i)

n (f, •)− (fg)(r)

∥∥∥∥∥
C[a∗2,b∗2]

=

∥∥∥∥∥
r∑

i=0

(r
i

)
g(r−i)(·)f (i) − (fg)(r)

∥∥∥∥∥
C[a∗2,b∗2]

+O(n−α/2)

= O
(
n−

α
2

)
.

Also by the Leibniz formula and Theorem 3.2, have

P2 ≤

∥∥∥∥∥
r∑

i=0

(r
i

)
g(r−i)(·)Bn(f, •) +B(r)

n (f(t)(g(t)− g(·))χ2(t), •)

∥∥∥∥∥
C[a∗2,b∗2]

+O(n−1)

=: ||P3 + P4||C[a∗2,b∗2] +O(n−1).

Then by Theorem 3.4, we have

P3 =
r−1∑
i=0

(r
i

)
g(r−i)(x)f (i)(x) +O

(
n−

α
2

)
,

uniformly in x ∈ [a∗2, b
∗
2]. Applying Taylor’s expansion off, we have

P4 =

∫ ∞

i=0

W (r)
n (x, t)[f(t)(g(t)− g(x))χ2(t)dt

=
r∑

i=0

f (i)(x)

i!

∫ ∞

0

W (r)
n (x, t)(t− x)i(g(t)− g(x))dt

+

∫ ∞

0

W (r)
n (x, t)

(f (r)(ξ)− f (r)(x))

r!
(t− x)r(g(t)− g(x))χ2(t)dt,

whereξ lying betweent andx. Next by Theorem 3.4, the first term in the above expression is
given by

r∑
m=0

( r
m

)
g(m)f (r−m)(x) +O

(
n−

α
2

)
,
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uniformly in x ∈ [a∗2, b
∗
2]. Also by mean value theorem and using Lemma 2.5, we can obtain the

second term as follows:∥∥∥∥∫ ∞

0

W (r)
n (x, t)

(f (r)(ξ)− f (r)(x))

r!
(t− x)r(g(t)− g(x))χ2(t)dt

∥∥∥∥
C[a∗2,b∗2]

≤
∑

2m+s≤r
m,s≥0

nm+s

∥∥∥∥ |Qm,s,r(x)|
x(1 + x)

r ∫ ∞

0

Wn(x, t)|t− x|δ+r+1 |f (r)(ξ)− f (r)(x)|
r!

|g′(η)|χ2(t)dt

∥∥∥∥
C[a∗2,b∗2]

= O
(
n−

δ
2

)
,

choosingδ such that0 ≤ δ ≤ 2− α. Combining the above estimates we get∥∥B(r)
n (fg, •)− (fg)(r)

∥∥
C[a∗2,b∗2]

= O
(
n−

α
2

)
.

Since suppfg ⊂ (a∗2, b
∗
2), it follows from Lemma 2.5 and Lemma 2.6 that(fg)(r) ∈

Liz(α, 1, a∗2, b
∗
2). Sinceg(x) = 1 on [a2, b2], we havef (r) ∈ Liz(α, 1, a∗2, b

∗
2). This completes

the proof of the theorem. �

Remark 4.2. As noted in the first section, these operators also reproduce the linear functions
so we can easily apply the iterative combinations to the operators (1.1) to improve the order of
approximation.
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