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ABSTRACT. Inthis paper, we propose some modified projection methods for general variational
inequalities. The convergence of these methods requires the monotonicity of the underlying
mapping. Preliminary computational experience is also reported.
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1. INTRODUCTION

Let K be a nonempty closed convex set in Euclidean sfg&cé-or given nonlinear operators
T, g : R* — R, consider the problem of finding vectoet € R" such thay (v*) € K and

(1.2) (T (u") g(u) — g (u")) > 0, ¥ g(u) € K.
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This problem is called general variational inequality (GVI) which was introduced by Noor in
[10]. General variational inequalities have important applications in many fields including eco-
nomics, operations research and nonlinear analysis, see e.d., [5], [10] — [15] and the references
therein.

If g(u) = u, then the general variational inequalify (1.1) reduces to finding vecter K
such that

(1.2) (T'(uw),u—u")>0,VueK,

which is known as the classical variational inequality and was introduced and studied by Stam-
pacchial[18] in 1964. For the recent state-of-the-art, see le.g., [1] — [22].

If K** = {u e R"|(u,v) >0, Vv € K} is a polar cone of a convex coé in R", then
problem (1.1) is equivalent to finding € R” such that

(1.3) g(u) € K, T(u) € K, (g(u), T(u)) =0,

which is known as the general complementarity probleny(df) = « — m(u), wherem is a
point-to-set mapping, then problem (1.3) is called quasi (implicit) complementarity problem.
For g(u) = u, problem [1.B) is known as the generalized complementarity problem.

For general variational inequality, Noor [10] gave a fixed point equation reformulation, Pang
and Yao [15] established some sufficient conditions for the existence of the solutions and in-
vestigated their stability, and Hel[5] proposed an inexact implicit method. In this paper, we
consider a projection method for solving GVI under the assumptions that the solution set is
nonempty and the underlying mapping is monotone in a generalized sense.

2. PRELIMINARIES

For nonempty closed convex s&t C R" and any vector: € R", the orthogonal projection
of u onto K, i.e.,arg min{||v — u|| | v € K}, is denoted byPx (u). In the following, we state
some well known properties of the projection operator.

Lemma 2.1. [23]. Let K be a closed convex subsetl®f, for anyu € R", v € K, then
(Pg(u) —u,v — Pg(u)) > 0.

From Lemma 21, it follows that the projection operaktyr is nonexpansive.
Invoking Lemma4 2.]L, one can prove that the general variational inequality (1.1) is equivalent
to the fixed-point problem For GVI, this result is due to Naori [10].

Lemma 2.2. [10]. A vectoru* € R™ with g (u*) € K is a solution of GVI if and only if
g (u*) = Pg(g (u*) — pT (u*)) for somep > 0.

Based on this fixed-point formulation, various projection type iterative methods for solving
general variational inequalities have been suggested and analyzed, see [5]/[10] — [15].

In this paper, we suggest another projection method which needs two projections at each
iteration and its convergence requires the following assumptions.

Assumptions.

(i) The solution set of GVI, denoted biy*, is nonempty.
(i) Mapping7 : R™ — R™ is g-monotone, i.e.,

(T'(u) =T(v), g(u) —g(v)) =0, Vu, veR"
(i) Mapping g : R" — R™ is nonsingular, i.e., there exists a positive constasuich that
[lg(u) = g(W)[| = pllu—vl], Vu, veR"
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Note that forg = I, g-monotonicity of mapping” reduces to the usual definition of mono-
tone. Furthermore, every solvable monotone variational inequality of form (1.2) satisfies the
above assumptions.

Throughout this paper, we define the residue ve&ig:) by the following relation

Ry(u) := g(u) — P(g(u) — pT'(u)).

Invoking Lemmd 2.2, one can easily conclude that vectds a solution of GVI if and only if
u* is a root of the following equation:

R,(u) =0, forsomep > 0.

3. ALGORITHMS AND CONVERGENCE

The basic idea of our method is as follows. First, take an initial pdinE R" such that
g (u®) € K and compute the projection residue. If it is a zero vector, then stop; otherwise,
take the negative projection residue as a direction and perform a line search along this direction
to get a new point; after constructing a “descent direction” related to the current point and the
new point, the next iterative point can be obtained by using a projection. Repeat this process
until the projection residue is a zero vector. So the algorithm needs only two projections at each
iteration.
Now, we formally describe our method for solving the GVI problem.
Algorithm 3.1.
Initial step:  Choose’ € R" such thay(u°) € K, select any, v € (0,1), p € (0, +00),
letk := 0.
lterative step: Fop (u*) € K, takew* € R" such thay (w*) := Px (g (u*) — pT (u")).
If | R, (u*)|| = 0, then stop. Otherwise, computé € R" such that
g (v*) =g (u") —mR, (u*),
wheren, = ™ with m;, being the smallest nonnegative integesatisfying

31 p (T ()~ T (04) R, () < o || B, (u)

Computeu**! by solving the following equation
g (") = Pk (g (u*) + ardy) ,
whered, = — (nkR,) (uk) + ne L’ (uk) + pT (v’“)) ,

A EACOI
X = Tde ]2 '

Remark 3.1. We analyze the step-size rule given[in {3.1). If Algorithm|3.1 terminates with
R, (u*) = 0, thenu* is a solution of GVI. Otherwise, by non-singularity ¢&ind continuity of
T andg, n satisfying [3.1) exists.
Remark 3.2. In Algorithm[3.], several implicit equations gfmust be solved at each iteration.
ifg=1, thenv® = (1 - nk)uk + nkwk.
Remark 3.3. We recall the searching directions appear in existing projection-type methods for
solving VI of form (1.2). They are
(i) the direction—T"(u*) by Korpelevich[[9], wherei* = Py (u* — ;T (u¥));
(ii) the direction— {u* — @* — o [T (v*) — T (@*)] } by Solodov and Tsen@ [17], Tseng
[20], Sun [19] and He [6].

(iii) the direction— {u* — @* + T (a*) } by Noor [13].

(iv) the direction—T (vk) by lusem and Svaiter [7] and Solodov and Svaiter [16].

(v) the direction— (nr (u*) + T (v*)) by Wang, Xiu and Wang [22].

I
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In our algorithm, whery = I, the searching direction reduces to

- (771<;7” (uk) + e T (uk) + pT (vk)) .
It is a combination of the projection residue ahdand differs from the above five types of
directions.
Now, we discuss the convergence of Algorithm|3.1. From the iterative procedure we know
thatg (u*) , g (v*) , g (w*) € K for all k. For anyg( *) € K*, by Assumption (ii), we have

(3.2) <pT (uk) , g (uk) — > > 0.
From Lemma 2J1, we know that

(9 (u") =T (u*) =g ("), g (") =g () 20,
which can be written as

(9 (u") =pT (u*) =g ("), g (") =g (u*))

+ (9 (u) — g (w*) = pT (") g (u*) = g (u")) = 0.
Combining with inequality[(3]2), we obtain
(33) (Ry () . (u") = g () = || R, (u")||" = p(T (u) . B, (u")).
So
(9 (u") =g (), —dx)
= (g (u*) =g () ame () + mT (u) + T (%))
= (9(u*) —g(u nkRp (u)) + (g (u") =g (), meT ()

+ (g (u*) =g (), pT (")
= i || R, (u’“)H = o (T (uF),
= i | By (u)|[* = o (T ()
= || By ()| = pmi (T (u*) —
> |[Ry () |* = ome || R, ()]
= (1= || R, ()]

where the first inequality uses (B.3) and thmonotonicity of7’, the second inequality follows

from inequality [3.11).
For anya > 0, one has

[P (g (u*) + adi) — g

< |lg (u") = g (u") + adi |

— |lg (@*) = g @)|* + & |de|l* + 20 (di, g (uF) — g ("))
< lg () = g @)|” + @l di]]* = 20 (1 = )i || R, () |

where the first inequality uses non-expansiveness of projection operator.
Based on the above analysis, we show that Algor[thr 3.1 converges under Assuingtions (i) —

(@)

Theorem 3.4. Under Assumptionis {i) [ (ili), if Algorithrin 3.1 generates an infinite sequence
{u*}, then{u*} globally converges to a solutian' of GVI.

)
R, (u")) + (9 (u") = g (v") . T ("))
Ry (u")) + e (R () . pT (%))

T (o) R, (u))

2

(u”)
(
(
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(1—0)mil R, (w12

Proof. Leta := o = IEAE in the aforementioned inequalities, we obtain
4
k+1 * kY NIk (]' — 0-)27713 HRP (uk H
|g(u*) — g (u®) (u*) — g (u*) TEAIE
So {||g (u*) — g (u (u*)} is a bounded sequence.

Sinceg is nonsmgular we conclude th{'ﬂz’“} isa bounded sequence. Short discussion leads to
that{d,} is bounded. So, there exists an infinite subggsuch that
lim ||R, (u*)|| =0

k€N ,k—o0

or an infinite subsed, such that

k€Ng,k—o00 "

I lim | R, (u*)]| = 0, we know that any clustet of {u* : k € N} is a solution of GVI.
€N1,k—00

Since{||g (u*) — g (u*)||} is non-increasing, if we take* = @, then we know thafg (u*)}
globally converges tg(a) and thus{u*} globally converges t@ from Assumpt|0|-

: _ —k n kY __ k i
If kez\};,ril_»oonk = 0, let o* € R" such thatg (v*) = g (u") — vR:W' From the linear

searching procedure af,, we have

p(T () =T@"). R, (u*)) > o ||R, ()|

, for sufficiently largek € N;.

Therefore,
p||T (W*) = T@")| > o ||R, (u*)]|, for sufficiently largek € Ns.
This, plus  lim 2 = 0,yields lim ||R, («*)|| = 0. Similar discussion leads to that
kENy k—oo k€Ng,k—o00
any cluster of{u’f k€ NQ} is a solution to GVI. Replacing* by this cluster point yields the
desired result. O

If we replacep with pj, in Algorithm[3.7, then we obtain the following improved algorithm
to GVI.

Algorithm 3.2.

Initial step: ~ Choose’ € R" such thay(u’) € K, selectany, v € (0,1), -1 =1,6 > 0.
Letk = 0.

lterative step: Foy (u") € K, definep, = min{6n;_,, 1}, and takew* € R™ such that
g (w*) = Prc(g (u*) = peT (u*)).
If R,, (u*) =0, then stop. Otherwise, také € R in the following way:
g (v*) = (1 =me)g (u*) +meg (w"),
wheren, = ™+, with my, being the smallest nonnegative integesatisfying
pi(T (u*) = T (%) . Ry, (u)) <o |[R,, (u")]".
Computeu**! by solving the foIIowmg equatlon
g ) = Pg(g (u*) + axdy)
Wheredk = — (nkRpk (Uk) + 77kT (uk) + ka (Uk)) ,

(o) | B («) |
R Ea—

The convergence of Algorithin 3.2 can be proved similarly.

ap =
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Dimension| Alg. (o =1) | Alg. 3.2 ¢ = 400)
n =10 73 56
n = 20 75 58
n = 50 78 58
n = 80 81 60
n = 100 84 60
n = 200 97 60

Table 4.1: Numbers of iterations for Example]4.1

4. PRELIMINARY COMPUTATIONAL EXPERIENCE

In the following, we present some numerical experiments for Algorithms 3.1 and 3.2. For
these algorithms, we useé (z*, p;,) || < 107® as stopping criteria.

Throughout the computational experiments, the parameters used weresset 8,y =
0.8. All computational results were undertaken on a PC-1l by MATLAB.

Example 4.1. This example is a quadratic subproblem of the trust region approach for solving
medium-size nonlinear programming problem:

1
min{ngHxvtch |z € C’}.

This problem is equivalent to VK, C) with F'(z) = Hz+c. the datais chosen a& = VWV,
whereV = T — % is a Householder matrix anidd” = diag(o;) with o; = cos nif1 -+ 1000.
The vectors andc contain pseudo-random numbers:

vy = 13846, v; = (42108v;_1 + 13846)mod46273, i = 2,...,n;

¢ = 13846, ¢; = (45287¢;_1 + 13846)mod46219, i = 2,...,n.

For this test problems, the domain €ét= {z € R" | ||z|| < 10°}. Table[4.1 gives the nu-
merical results for this example with starting paifit= (0,0, ..., 0)? for different dimensions
n.

Example 4.2. This example is a general variational inequality with) = Az + ¢ andF(x) =
x, where

4 =2 0 --- 0 1

1 4 -2 ... 0 1

0 1 4 0 1
A: . 7q:

o o0 0 - =2 1

o o o0 --- 4 1

For this test problems, the domain gét={z € R" |0 < z; < 1, fori =1,2,---n}. Table
gives the results for this example with starting patht= — A~!¢ for different dimensions
n.

From Tablg 4.]1 and TabJe 4.2, one observes that Algorifhnmjs 3.[[ and 3.2 work quite well for
these examples, respectively, and there is not much difference to the choice of payanreter
the second algorithm, especially for Examplg 4.2.
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Dimension| Alg. (0 =1) | Alg. (100 < 0 < 400)
n =10 492 492
n = 20 489 489
n = 50 484 484
n =380 481 481
n = 100 480 480
n = 200 476 476

Table 4.2: Numbers of iterations for Example]4.2
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