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ABSTRACT. In this paper, we propose some modified projection methods for general variational
inequalities. The convergence of these methods requires the monotonicity of the underlying
mapping. Preliminary computational experience is also reported.
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1. I NTRODUCTION

Let K be a nonempty closed convex set in Euclidean spaceRn. For given nonlinear operators
T, g : Rn → Rn, consider the problem of finding vectoru∗ ∈ Rn such thatg (u∗) ∈ K and

(1.1) 〈T (u∗) , g(u)− g (u∗)〉 ≥ 0, ∀ g(u) ∈ K.
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This problem is called general variational inequality (GVI) which was introduced by Noor in
[10]. General variational inequalities have important applications in many fields including eco-
nomics, operations research and nonlinear analysis, see, e.g., [5], [10] – [15] and the references
therein.

If g(u) ≡ u, then the general variational inequality (1.1) reduces to finding vectoru∗ ∈ K
such that

(1.2) 〈T (u∗) , u− u∗〉 ≥ 0, ∀ u ∈ K,

which is known as the classical variational inequality and was introduced and studied by Stam-
pacchia [18] in 1964. For the recent state-of-the-art, see e.g., [1] – [22].

If K∗∗ = {u ∈ Rn | 〈u, v〉 ≥ 0, ∀ v ∈ K} is a polar cone of a convex coneK in Rn, then
problem (1.1) is equivalent to findingu∗ ∈ Rn such that

(1.3) g(u) ∈ K, T (u) ∈ K∗∗, 〈g(u), T (u)〉 = 0,

which is known as the general complementarity problem. Ifg(u) = u − m(u), wherem is a
point-to-set mapping, then problem (1.3) is called quasi (implicit) complementarity problem.
Forg(u) = u, problem (1.3) is known as the generalized complementarity problem.

For general variational inequality, Noor [10] gave a fixed point equation reformulation, Pang
and Yao [15] established some sufficient conditions for the existence of the solutions and in-
vestigated their stability, and He [5] proposed an inexact implicit method. In this paper, we
consider a projection method for solving GVI under the assumptions that the solution set is
nonempty and the underlying mapping is monotone in a generalized sense.

2. PRELIMINARIES

For nonempty closed convex setK ⊂ Rn and any vectoru ∈ Rn, the orthogonal projection
of u ontoK, i.e.,arg min{||v − u|| | v ∈ K}, is denoted byPK(u). In the following, we state
some well known properties of the projection operator.

Lemma 2.1. [23]. LetK be a closed convex subset ofRn, for anyu ∈ Rn, v ∈ K, then

〈PK(u)− u, v − PK(u)〉 ≥ 0.

From Lemma 2.1, it follows that the projection operatorPK is nonexpansive.
Invoking Lemma 2.1, one can prove that the general variational inequality (1.1) is equivalent

to the fixed-point problem For GVI, this result is due to Noor [10].

Lemma 2.2. [10]. A vectoru∗ ∈ Rn with g (u∗) ∈ K is a solution of GVI if and only if
g (u∗) = PK(g (u∗)− ρT (u∗)) for someρ > 0.

Based on this fixed-point formulation, various projection type iterative methods for solving
general variational inequalities have been suggested and analyzed, see [5], [10] – [15].

In this paper, we suggest another projection method which needs two projections at each
iteration and its convergence requires the following assumptions.

Assumptions.
(i) The solution set of GVI, denoted byK∗, is nonempty.

(ii) MappingT : Rn → Rn is g-monotone, i.e.,

〈T (u)− T (v), g(u)− g(v)〉 ≥ 0, ∀ u, v ∈ Rn.

(iii) Mapping g : Rn → Rn is nonsingular, i.e., there exists a positive constantµ such that

||g(u)− g(v)|| ≥ µ||u− v||, ∀ u, v ∈ Rn.
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Note that forg ≡ I, g-monotonicity of mappingT reduces to the usual definition of mono-
tone. Furthermore, every solvable monotone variational inequality of form (1.2) satisfies the
above assumptions.

Throughout this paper, we define the residue vectorRρ(u) by the following relation

Rρ(u) := g(u)− PK(g(u)− ρT (u)).

Invoking Lemma 2.2, one can easily conclude that vectoru∗ is a solution of GVI if and only if
u∗ is a root of the following equation:

Rρ(u) = 0, for someρ ≥ 0.

3. ALGORITHMS AND CONVERGENCE

The basic idea of our method is as follows. First, take an initial pointu0 ∈ Rn such that
g (u0) ∈ K and compute the projection residue. If it is a zero vector, then stop; otherwise,
take the negative projection residue as a direction and perform a line search along this direction
to get a new point; after constructing a “descent direction” related to the current point and the
new point, the next iterative point can be obtained by using a projection. Repeat this process
until the projection residue is a zero vector. So the algorithm needs only two projections at each
iteration.

Now, we formally describe our method for solving the GVI problem.

Algorithm 3.1.
Initial step: Chooseu0 ∈ Rn such thatg(u0) ∈ K, select anyσ, γ ∈ (0, 1), ρ ∈ (0, +∞),

let k := 0.
Iterative step: Forg

(
uk

)
∈ K, takewk ∈ Rn such thatg

(
wk

)
:= PK

(
g

(
uk

)
− ρT

(
uk

))
.

If
∥∥Rρ

(
uk

)∥∥ = 0, then stop. Otherwise, computevk ∈ Rn such that
g

(
vk

)
:= g

(
uk

)
− ηkRρ

(
uk

)
,

whereηk = γmk with mk being the smallest nonnegative integerm satisfying

(3.1) ρ
〈
T

(
uk

)
− T

(
vk

)
, Rρ

(
uk

)〉
≤ σ

∥∥Rρ

(
uk

)∥∥2
.

Computeuk+1 by solving the following equation
g

(
uk+1

)
= PK

(
g

(
uk

)
+ αkdk

)
,

wheredk = −
(
ηkRρ

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

))
,

αk =
(1−σ)ηk‖Rρ(uk)‖2

‖dk‖2
.

Remark 3.1. We analyze the step-size rule given in (3.1). If Algorithm 3.1 terminates with
Rρ

(
uk

)
= 0, thenuk is a solution of GVI. Otherwise, by non-singularity ofg and continuity of

T andg, ηk satisfying (3.1) exists.

Remark 3.2. In Algorithm 3.1, several implicit equations ofg must be solved at each iteration.
If g ≡ I, thenvk = (1− ηk)u

k + ηkw
k.

Remark 3.3. We recall the searching directions appear in existing projection-type methods for
solving VI of form (1.2). They are

(i) the direction−T (ūk) by Korpelevich [9], wherēuk = PK

(
uk − αkT

(
uk

))
;

(ii) the direction−
{
uk − ūk − αk

[
T

(
uk

)
− T

(
ūk

)]}
by Solodov and Tseng [17], Tseng

[20], Sun [19] and He [6].
(iii) the direction−

{
uk − ūk + T

(
ūk

)}
by Noor [13].

(iv) the direction−T
(
vk

)
by Iusem and Svaiter [7] and Solodov and Svaiter [16].

(v) the direction−
(
ηkr

(
uk

)
+ T

(
vk

))
by Wang, Xiu and Wang [22].
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In our algorithm, wheng ≡ I, the searching direction reduces to

−
(
ηkr

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

))
.

It is a combination of the projection residue andT , and differs from the above five types of
directions.

Now, we discuss the convergence of Algorithm 3.1. From the iterative procedure, we know
thatg

(
uk

)
, g

(
vk

)
, g

(
wk

)
∈ K for all k. For anyg (u∗) ∈ K∗, by Assumption (ii), we have

(3.2)
〈
ρT

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥ 0.

From Lemma 2.1, we know that〈
g

(
uk

)
− ρT

(
uk

)
− g

(
wk

)
, g

(
wk

)
− g (u∗)

〉
≥ 0,

which can be written as〈
g

(
uk

)
− ρT

(
uk

)
− g

(
wk

)
, g

(
wk

)
− g

(
uk

)〉
+

〈
g

(
uk

)
− g

(
wk

)
− ρT

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥ 0.

Combining with inequality (3.2), we obtain

(3.3)
〈
Rρ

(
uk

)
, g

(
uk

)
− g (u∗)

〉
≥

∥∥Rρ

(
uk

)∥∥2 − ρ
〈
T

(
uk

)
, Rρ

(
uk

)〉
.

So 〈
g

(
uk

)
− g (u∗) ,−dk

〉
=

〈
g

(
uk

)
− g (u∗) , ηkRρ

(
uk

)
+ ηkT

(
uk

)
+ ρT

(
vk

)〉
=

〈
g

(
uk

)
− g (u∗) , ηkRρ

(
uk

)〉
+

〈
g

(
uk

)
− g (u∗) , ηkT

(
uk

)〉
+

〈
g

(
uk

)
− g (u∗) , ρT

(
vk

)〉
≥ ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
, Rρ

(
uk

)〉
+

〈
g

(
uk

)
− g

(
vk

)
, ρT

(
vk

)〉
= ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
, Rρ

(
uk

)〉
+ ηk

〈
Rρ

(
uk

)
, ρT

(
vk

)〉
= ηk

∥∥Rρ

(
uk

)∥∥2 − ρηk

〈
T

(
uk

)
− T

(
vk

)
, Rρ

(
uk

)〉
≥ ηk

∥∥Rρ

(
uk

)∥∥2 − σηk

∥∥Rρ

(
uk

)∥∥2

= (1− σ)ηk

∥∥Rρ

(
uk

)∥∥2
,

where the first inequality uses (3.3) and theg-monotonicity ofT , the second inequality follows
from inequality (3.1).

For anyα > 0, one has∥∥PK

(
g

(
uk

)
+ αdk

)
− g (u∗)

∥∥2

≤
∥∥g

(
uk

)
− g (u∗) + αdk

∥∥2

=
∥∥g

(
uk

)
− g (u∗)

∥∥2
+ α2 ‖dk‖2 + 2α

〈
dk, g

(
uk

)
− g (u∗)

〉
≤

∥∥g
(
uk

)
− g (u∗)

∥∥2
+ α2‖dk‖2 − 2α(1− σ)ηk

∥∥Rρ

(
uk

)∥∥2
,

where the first inequality uses non-expansiveness of projection operator.
Based on the above analysis, we show that Algorithm 3.1 converges under Assumptions (i) –

(iii).

Theorem 3.4. Under Assumptions (i) – (iii), if Algorithm 3.1 generates an infinite sequence
{uk}, then{uk} globally converges to a solutionu∗ of GVI.
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Proof. Let α := αk =
(1−σ)ηk||Rρ(uk)||2

‖dk‖2
in the aforementioned inequalities, we obtain

∥∥g(uk+1)− g (u∗)
∥∥ ≤ ∥∥g

(
uk

)
− g (u∗)

∥∥2 −
(1− σ)2η2

k

∥∥Rρ

(
uk

)∥∥4

||dk||2
.

So
{∥∥g

(
uk

)
− g (u∗)

∥∥}
is a non-increasing sequence, and

{
g

(
uk

)}
is a bounded sequence.

Sinceg is nonsingular, we conclude that{uk} is a bounded sequence. Short discussion leads to
that{dk} is bounded. So, there exists an infinite subsetN1 such that

lim
k∈N1,k→∞

∥∥Rρ

(
uk

)∥∥ = 0

or an infinite subsetN2 such that

lim
k∈N2,k→∞

ηk = 0.

If lim
k∈N1,k→∞

∥∥Rρ

(
uk

)∥∥ = 0, we know that any cluster̃u of {uk : k ∈ N1} is a solution of GVI.

Since
{∥∥g

(
uk

)
− g (u∗)

∥∥}
is non-increasing, if we takeu∗ = ũ, then we know that{g

(
uk

)
}

globally converges tog(ũ) and thus{uk} globally converges tõu from Assumption (iii).
If lim

k∈N2,k→∞
ηk = 0, let v̄k ∈ Rn such thatg

(
vk

)
= g

(
uk

)
− ηk

γRρ(uk)
. From the linear

searching procedure ofηk, we have

ρ
〈
T

(
uk

)
− T (v̄k), Rρ

(
uk

)〉
> σ

∥∥Rρ

(
uk

)∥∥2
, for sufficiently largek ∈ N2.

Therefore,

ρ
∥∥T

(
uk

)
− T (v̄k)

∥∥ > σ
∥∥Rρ

(
uk

)∥∥ , for sufficiently largek ∈ N2.

This, plus lim
k∈N2,k→∞

ηk

γ
= 0, yields lim

k∈N2,k→∞

∥∥Rρ

(
uk

)∥∥ = 0. Similar discussion leads to that

any cluster of
{
uk : k ∈ N2

}
is a solution to GVI. Replacingu∗ by this cluster point yields the

desired result. �

If we replaceρ with ρk in Algorithm 3.1, then we obtain the following improved algorithm
to GVI.

Algorithm 3.2.
Initial step: Chooseu0 ∈ Rn such thatg(u0) ∈ K, select anyσ, γ ∈ (0, 1), η−1 = 1, θ > 0.

Let k = 0.
Iterative step: Forg

(
uk

)
∈ K, defineρk = min{θηk−1, 1}, and takewk ∈ Rn such that

g
(
wk

)
= PK(g

(
uk

)
− ρkT

(
uk

)
).

If Rρk

(
uk

)
= 0, then stop. Otherwise, takevk ∈ Rn in the following way:

g
(
vk

)
= (1− ηk)g

(
uk

)
+ ηkg

(
wk

)
,

whereηk = γmk , with mk being the smallest nonnegative integerm satisfying
ρk〈T

(
uk

)
− T

(
vk

)
, Rρk

(
uk

)
〉 ≤ σ

∥∥Rρk

(
uk

)∥∥2
.

Computeuk+1 by solving the following equation:
g(uk+1) = PK(g

(
uk

)
+ αkdk)

wheredk = −
(
ηkRρk

(
uk

)
+ ηkT

(
uk

)
+ ρkT

(
vk

))
,

αk =
(1−σ)ηk‖Rρk(uk)‖2

‖dk‖2
.

The convergence of Algorithm 3.2 can be proved similarly.
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Dimension Alg. 3.1 (ρ = 1) Alg. 3.2 (θ = 400)
n = 10 73 56
n = 20 75 58
n = 50 78 58
n = 80 81 60
n = 100 84 60
n = 200 97 60

Table 4.1: Numbers of iterations for Example 4.1

4. PRELIMINARY COMPUTATIONAL EXPERIENCE

In the following, we present some numerical experiments for Algorithms 3.1 and 3.2. For
these algorithms, we used

∥∥r
(
xk, ρk

)∥∥ ≤ 10−8 as stopping criteria.
Throughout the computational experiments, the parameters used were set asσ = 0.5, γ =

0.8. All computational results were undertaken on a PC-II by MATLAB.

Example 4.1. This example is a quadratic subproblem of the trust region approach for solving
medium-size nonlinear programming problem:

min

{
1

2
x>Hx + c>x | x ∈ C

}
.

This problem is equivalent to VI(F, C) with F (x) = Hx+c. the data is chosen as:H = V WV ,
whereV = I − 2 vv>

||v||2 is a Householder matrix andW = diag(σi) with σi = cos iπ
n+1

+ 1000.
The vectorsv andc contain pseudo-random numbers:

v1 = 13846, vi = (42108vi−1 + 13846)mod46273, i = 2, . . . , n;

c1 = 13846, ci = (45287ci−1 + 13846)mod46219, i = 2, . . . , n.

For this test problems, the domain setC = {x ∈ Rn | ||x|| ≤ 105}. Table 4.1 gives the nu-
merical results for this example with starting pointx0 = (0, 0, . . . , 0)T for different dimensions
n.

Example 4.2.This example is a general variational inequality withg(x) = Ax+ q andF (x) =
x, where

A =



4 −2 0 · · · 0
1 4 −2 · · · 0
0 1 4 · · · 0
...

...
...

...
...

0 0 0 · · · −2
0 0 0 · · · 4

 , q =



1
1
1
...
1
1

 .

For this test problems, the domain setC = {x ∈ Rn | 0 ≤ xi ≤ 1, for i = 1, 2, · · ·n}. Table
4.2 gives the results for this example with starting pointx0 = −A−1q for different dimensions
n.

From Table 4.1 and Table 4.2, one observes that Algorithms 3.1 and 3.2 work quite well for
these examples, respectively, and there is not much difference to the choice of parameterρk in
the second algorithm, especially for Example 4.2.
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Dimension Alg. 3.1 (ρ = 1) Alg. 3.2 (100 ≤ θ ≤ 400)
n = 10 492 492
n = 20 489 489
n = 50 484 484
n = 80 481 481
n = 100 480 480
n = 200 476 476

Table 4.2: Numbers of iterations for Example 4.2
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