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ABSTRACT. Let L, Hr, andAs stand for the logarithmic mean, the Heronian mean of orderr,
and the power mean of orders, of two positive variables. A generalization of the inequality

L ≤ Hr ≤ As

(1/2 ≤ r ≤ 3s/2), of G. Jia and J. Cao ([3]), is obtained.
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1. I NTRODUCTION AND DEFINITIONS

Let x andy be positive numbers. The Heronian mean of ordera ∈ R of x andy, denoted by
Ha ≡ Ha(x, y), is defined as

Ha =


(

xa + (xy)a/2 + ya

3

) 1
a

, a 6= 0

G, a = 0,

whereG =
√

xy is the geometric mean ofx andy. Whena = 1, we will write H instead of
H1. Let us note thatH = (2A + G)/3, whereA = (x + y)/2 is the arithmetic mean ofx andy.
The logarithmic meanL of x andy and the power meanAa of ordera of x andy are defined as

L =


x− y

ln x− ln y
, x 6= y

x, x = y,
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and

Aa =


(

xa + ya

2

) 1
a

, a 6= 0

G, a = 0,

respectively. Throughout the sequel the means of order one will be denoted by a single letter
with the subscript 1 being omitted.

In the recent paper [3] the authors have established the following result. Let1
2
≤ r ≤ 3

2
s.

Then

(1.1) L ≤ Hr ≤ As.

All the means mentioned earlier in this section belong to the large family of means introduced
by K.B. Stolarsky in [8]. This two-parameter class of means, denoted byDa,b, is defined as
follows

(1.2) Da,b =



(
b

a
· xa − ya

xb − yb

) 1
(a−b)

, ab(a− b) 6= 0

exp

(
−1

a
+

xa ln x− ya ln y

xa − ya

)
, a = b 6= 0[

xa − ya

a(ln x− ln y)

] 1
a

, a 6= 0, b = 0

G, a = b = 0.

For later use let us record some formulas which follow from (1.2). We have

(1.3) Hr = D3r/2,r/2, As = D2s,s, Lp = Dp,0, It = Dt,t.

HereLp is the logarithmic mean of orderp andIt is called the identric mean of ordert.
The inequalities (1.1) can be written in terms of the Stolarsky means as

(1.1′) D1,0 ≤ D3r/2,r/2 ≤ D2s,s.

The goal of this note is to provide a short proof of a general inequality (see (2.1)) which
contains (1.1) as a special case.

2. M AIN RESULT

For the reader’s convenience, we recall the Comparison Theorem for the Stolarsky means.
Two functions

k(p, q) =


|p| − |q|
p− q

, p 6= q

sign(p), p = q

and

l(p, q) =

{
L(p, q), p > 0, q > 0

0, p · q = 0

play a crucial role in the Comparison Theorem which has been established by E.B. Leach and
M.C. Sholander [4] and also by Zs. Páles [6].

Theorem 2.1(Comparison Theorem). Leta, b, c, d ∈ R. Then the comparison inequality

Da,b ≤ Dc,d
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holds true if and only ifa + b ≤ c + d and

l(a, b) ≤ l(c, d) if 0 ≤ min(a, b, c, d),

k(a, b) ≤ k(c, d) if min(a, b, c, d) < 0 < max(a, b, c, d),

−l(−a,−b) ≤ −l(−c,−d) if max(a, b, c, d) ≤ 0.

In what follows the symbolsR+ andR− will stand for the nonnegative semi-axis and the
nonpositive semi-axis, respectively.

The main result of this note reads as follows.

Theorem 2.2.Letp, q, r, s, t ∈ R+. Then the inequalities

(2.1) Dp,q ≤ Hr ≤ Ds,t

hold true if and only if

(2.2) max

{
p + q

2
, (ln 3)l(p, q)

}
≤ r ≤ min

{
s + t

2
, (ln 3)l(s, t)

}
.

If p, q, r, s, t ∈ R−, then the inequalities(2.1)are reversed if and only if

(2.3) max

{
s + t

2
, (− ln 3)l(−s,−t)

}
≤ r ≤ min

{
p + q

2
, (− ln 3)l(−p,−q)

}
.

Proof. We shall establish the first part of the assertion only. Using the Comparison Theorem
we see that the inequalities

(2.4) Dp,q ≤ D3r/2,r/2 ≤ Ds,t

hold true if and only if

(2.5) p + q ≤ 2r ≤ s + t

and

(2.6) l(p, q) ≤ r

ln 3
≤ l(s, t).

Solving the inequalities forr we obtain (2.2). Since the middle term in (2.4) equals toHr (see
(1.3)), the assertion follows. �

Remark 2.3. Letting p = 1, q = 0, s := 2s andt = s in (2.1) and next using (1.1′) we obtain
the inequalities (1.1).

Corollary 2.4. Letp, q, r, s, t ∈ R+. Then the inequalities

(2.7) Lp ≤ Hr ≤ As ≤ It

hold true if and only ifp ≤ 2r ≤ 3s ≤ 2t.

Proof. Letting q = 0, s := 2s, andt = s in (2.1) and (2.2) we obtain the first two inequalities
in (2.7). It is easy to see, using the Comparison Theorem, that the inequalityD2s,s ≤ Dt,t is
valid if and only if3s ≤ 2t. This completes the proof of the third inequality in (2.7) because of
(1.3). �

It is worth mentioning that (2.7) contains two known results:H ≤ I (see [7]) and
√

AL ≤
A2/3 ≤ I (see [5]). Indeed, lettingp = 2, r = 1, s = 3

2
andt = 1 in Corollary 2.4 we obtain

(2.8)
√

AL ≤ H ≤ A2/3 ≤ I.

Here we have used the formulaL2 =
√

AL.
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The celebrated Gauss’ arithmetic-geometric meanAGM ≡ AGM(x, y) of x > 0 andy > 0
is the common limit of two sequences{xn}∞0 and{yn}∞0 , i.e.,

AGM = lim
n→∞

xn = lim
n→∞

yn,

wherex0 = x, y0 = y, xn+1 = (xn + yn)/2, yn+1 =
√

xnyn (n ≥ 0). This important mean is
used for numerical evaluation of the complete elliptic integral of the first kind [2]

RK(x2, y2) =
2

π

∫ π/2

0

(x2 cos2 φ + y2 sin2 φ)−1/2dφ.

Gauss’ famous result states thatRK(x2, y2) = 1/AGM(x, y).

Corollary 2.5. Letx > 0 andy > 0. Then

(2.9) AGM ≤ H3/4.

Proof. J. Borwein and P. Borwein [1, Prop. 2.7] have proven thatAGM ≤ L3/2. On the other
hand, using the first inequality in (2.7) withp = 3/2 andr = 3/4 we obtainL3/2 ≤ H3/4.
Hence (2.9) follows. �

Some results of this note can be used to obtain inequalities involving hyperbolic functions.
For instance, using (2.7), (1.3), and (1.2), withx = e andy = e−1, we obtain(

sinh p

p

) 1
p

≤
(

2 cosh r + 1

3

) 1
r

≤ (cosh s)
1
s ≤ exp

(
−1

t
+ coth t

)
(0 < p ≤ 2r ≤ 3s ≤ 2t).
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