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In this note we give a completely different proof to a functional inequality estab-
lished by Ismail and Laforgia for the survival function of the gamma distribution
and we show that the inequality in the question is in fact the so-called new-is-
better-than-used property, which arises in economic theory. Moreover, we extend
this result to arbitrary reliability functions and we present a new simple proof for
the Esseen-Mitrinog inequality.
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1. Functional Inequalities Involving the Incomplete Gamma
Function

Let

Functional Inequality for
Survival Function

and

Arpad Baricz

2 e
erfc(z) = — e " dt
va /:c

denote, as usual, the distribution function of the standard normal law, the error func-
tion and the complementary error function. Esse&rp[ 291] in 1961 proved the

vol. 9, iss. 1, art. 13, 2008

following interesting inequality related to the distribution functinfor all z,y < 0 Title Page
we have Contents
(1.1) Oz +y) <20(x)P(y). < >
Another interesting inequality, which was published by Mitriro{é, p. 291] in < 4
1968 and proved by Weinacht, is: for all real numberg > 0 we have Page 3 of 12
(1.2) erf(z) erf(y) > erf(x) 4 erf(y) — erf(z + y), Go Back
with equality if and only ifx or y is an end point of the closed interv@l, +oc]. Full Screen
Recently, in 2003, Alzer], Theorem 1] extended and complemented the inequality Close

(1.2), showing in particular thatl(?) is valid for all real numbers: andy. More-
over, Alzer pointed out that inequalities.() and (L.2) are not only similar, but even
equivalent. Observe that sinegf(x) + erfc(z) = 1, inequality (L.2) is equivalent to
the inequality
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(1.3) erfe(x 4+ y) < erfe(x) erfe(y) forall z,y € R.
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Now for allp > 0 andx € R let

T(p,x):/ tP~te ! dt, v(p,x):/ tr~te~tdt
T 0

and -
[(p) = / tr~te~t dt
0

denote the upper incomplete gamma function, the lower incomplete gamma function
and the gamma function, respectively. Recently, in 2006, motivated by the inequality
(1.2), Ismail and Laforgia4, Theorem 1.1], with their clever use of Rolle’s theorem,
proved that the function : [0, c0) — (0, 1], defined byg(z) := I'(p, z)/I'(p), when

p > 1 satisfies the following inequality

(1.4) q(z +y) < q(z)q(y) forall =,y > 0.

Moreover, they showed that where (0, 1], the above inequality is reversed. In this
section our aim is to show that inequality.4) can be deduced easily using some
well-known facts from probability theory. Before we state our main results we need
the following technical lemma.

Lemma 1.1. Let us consider the continuously differentiable functon [0, co) —
(0,00). If ¢(0) > 1 andy is log-concave, then for alt, y > 0 we havep(x + y) <
o(x)p(y). Moreover, ifp(0) < 1 andg is log-convex, then the above inequality is
reversed.

Proof. First suppose thap(0) > 1 andy is log-concave. Let the function :
[0,00) — R be defined byp(x) := logy(x) — x¢'(x)/p(x). Clearly we have
¢ (r) = —x(¢'(x)/e(x)) > 0 and consequently is increasing. Thug(z) >
¢(0) = logp(0) > 0 for all z > 0. Hence it is easy to verify that the function—
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[log ¢(x)]/z is decreasing of0, co), which implies that the functiom — log p(z)

is sub-additive o0, co). Therefore for allz, y > 0 we havep(z + y) < p(z)p(y).
Now suppose thap(0) < 1 andy is log-convex. Themw is decreasing and this

implies thato(z) < ¢(0) = log(0) < 0 for all z > 0. Hence the function: —

[log ¢(x)]/z is increasing or{0, co), which implies that the functiom — log (z)

is super-additive ofD, co). This completes the proof. O

Let f be a probability density function whose support is the intejad] and let
F :[a,b] — [0,1], defined by

Fa) = [ s,

be the corresponding cumulative distribution function. The funcfion [a, b] —
0, 1], defined by

b
Fla)=1-Flo) = [ 1),

is known as the corresponding reliability function or the survival function. From
the theory of probabilities — see for example Bagnoli and Bergst@nitieorem
1,2] — it is well-known thaif the density functiory is continuously differentiable
and log-concave ofu, b), then the survival functiof is also log-concave ofu, b).
Moreover,if f is continuously differentiable and log-convex (@nb) and if f(b) =
0, then the reliability function is also log-convex ofu, b).

We are now in a position to present an alternative proof.cf@nd its reverse.

Proof of (1.4). Recall that the gamma distribution has suppart] = [0, c0) and
density functionf(z) = xP~'e~*/T'(p). From definitions, the gamma distribution
has the cumulative distribution function — ~(p,z)/T'(p) and consequently the
functionq defined above is actually the survival function of the gamma distribution,
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sincel'(p,z) + v(p,x) = I'(p). Easy computations show thadg f(x)]” = (1 —
p)/x?. First suppose that > 1. Then the density functiorf is log-concave and
consequently the functiopis log-concave too. Buf(0) = 1, thus from Lemma..1
we conclude thatl(4) holds. Now assume thate (0, 1]. Then the density function
f is log-convex and satisfie&b) = f(oo) = 0. Hence the reliability function is
log-convex too. Application of Lemma 1yields the reverse ofl(4). O

The above argument yields the following general result which we state without
proof, since the proof of the next theorem goes along the lines introduced above in
the proof of (L.4).

Theorem 1.2.Let f be a continuously differentiable density function which has sup-
port [0, c0). If f is log-concave, then for alt, y > 0 we have

(1.5) F(z+y) < F(z)F(y).
Moreover, iff is log-convex, then the above inequality is reversed.

We note that after we finished the first draft of this manuscript we discovered that
the inequalityF (z+y) < F(z)F(y) is in fact not new. More precisely, the above in-
equality is known in economic theory as the new-is-better-than-used property, since
if X is the time of death of a physical object, then the probabititX > z) = F(z)
that a new unit will survive to age, is greater than the probability

P(X>z+y) Flz+y)
P(X >y) F(y)
that a survived unit of age will survive for an additional time:. For more details,

the interested reader is referred to An’s pagrdection 4.2], where among other
things a slightly different proof ofl(.5) is given.
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2. Functional Inequalities Involving the Survival Functions of
Other Distributions

Let us consider the density functigi : [0,00) — (0, 00), defined by

e Tu(n)
fl (l‘) - fooo e_tu(t) dt’ Functional Inequality for
Survival Function
whereu : [0,00) — (0,00) is a continuously differentiable function such that- Arpad Baricz
e~'u(t) is integrable. Clearly we have thag fi(x)]” = [logu(z)]”. Consider the vol. 9,iss. 1, art. 13, 2008
survival functionf’; : [0, c0) — (0, 1], defined by
— &0 Title Page
Fo(z) = / fi()dt
z Contents
Then clearlyF,(0) = 1 and <« >
o o] L o} » < >
Fi(z) = e tu(t) dt e ‘u(t)dt .
z 0 Page 7 of 12
Thus, applying Theorem.2we have the following generalization of ). Note that Go Back
it can be easily seen the first part of the next corollary is in fact equivalent to the first
part of Theorem 1.3 due to Ismail and Laforgia .| Full Screen
Corollary 2.1. If u is log-concave, then for alt,y > 0 we haveF,(z + y) < Close

F,(x)F1(y). Moreover, ifu is log-convex and~*u(z) tends to zero as tends to

infinity, then the above inequality is reversed. il e laxebielites

in pure and applied
Now consider the following distributions: Weibull distribution, chi-squared dis- mathematics
tribution and chi distribution. These distributions have supfiprtc) and density issn: 1443-5756
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functions forp > 0 as follows
l'(p72)/267x/2

fg(l’) = pxp—le—aﬂ)’ fg(x) = W

and
m13—16—172/2

fa(z) = 262720 (p/2)’

Recall that the Weibull distribution with = 2 — as well as the chi distribution with

p = 2 —is sometimes known as the Rayleigh distribution and the chi distribution
with p = 3 is sometimes called the Maxwell distribution. With some computations
we get

log f(e))' = 21 pe), g fy(a))' = 22

and
1

log fu(a))" = —* — L.

Thus the density functiorf, of the Weibull distribution is log-concave jif > 1 and

is log-convex ifp € (0,1]. Moreover, it is easy to verify that ip € (0, 1], then
f2(0c0) = 0. Analogously, the density functiofi of the chi-squared distribution is
log-concave ifp > 2, is log-convex ifp € (0,2] and f3(c0) = 0. Finally, note that
the density functiory, of the chi distribution is log-concave too when> 1. For
the log-concavity of the functiong, f3, f4 and other known density functions, the
interested reader is referred to Bagnoli's and Bergstrom’s p&p&ection 6]. Now,
let us define the survival functions of these distributiéns [0, co) — (0, 1] by

Fm»:/wmw&,
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wherei = 2,3, 4. Clearly we havel;(0) = 1 for eachi = 2,3, 4. Thus, applying
Theoreml.2we have the following result.

Corollary 2.2. If p > 1 then for allz,y > 0 we have the inequality’;(z + y) <
Fi(z)Fi(y), wherei = 2,4. Whenp € (0,1] andi = 2 the above inequality is
reversed. Ifp > 2, then for allz,y > 0 the inequalityFs(z + y) < Fs(x)F3(y)
holds. Moreover, whep € (0, 2] the above inequality is reversed.
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3. Concluding Remarks

In this section we list some remarks related to the results of the previous sections.

1. First note that the density function — e~*"/y/2r of the normal distribution
is clearly log-concave of®. Thus we have that the tail functioh : R — (0, 1),
defined byd(x) = 1 — ®(z), is log-concave too oR. Since2®(xv/2) = 1+ erf(z)
anderf(z) + erfc(z) = 1, we have thatrfc(z) = 2®(2+/2), which implies that the
complementary error function is log-concave as wellforSinceerfc(0) = 1, the
application of Lemmad..1yields a new proof of inequalityl(?).

2. Recall that due to Petravi7], [6, p. 22], we know that ifp is a convex function
on the domain which contaits 1, z», . .., x,, > 0, then

P(x1) + d(w2) + -+ + ¢(zn) < P(x1 + -+ + 25) + (0 — 1)9(0).

If n = 2and¢(0) = 0, then the last inequality shows thatis a super-additive
function. Thus ify is defined as in Lemma.1, ¢(0) = 1 andy is log-convex, then
from Petrove’s result easily follows that — log ¢ (z) is super-additive.

3. A function f with domain(0, co) is said to be completely monotonic if it pos-
sesses derivative€™ foralln = 1,2,3,... and if (—1)" f™(z) > 0 for all = > 0.
Due to Kimberling p] we know thatif the continuous function : [0, c0) — (0, 1]

is completely monotonic dif), co), then we get that — log h(x) is super-additive,
i.e., forallz,y > 0we haveh(z)h(y) < h(x +y).

We note that the reverse df.{) is actually an immediate consequence of Kimber-

ling’s result. To prove this, first let us consider= 1. Theng(z) = e~* and clearly
we have equality in1(.4). Now suppose that € (0, 1). Then from the Leibniz rule
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for derivatives we have

(—1)"¢™ ()T (p) = (4)71%
= (e e
—e® nz: ck | H (m — p)a?*1 >0

forallz > 0 andp € (0,1). Thus the functiony is completely monotonic. Now
sinceq maps|0, oo) into (0, 1], from Kimberling’s result the reverse of () holds.
Moreover, using the above argument related to Coroltaiywe have the following
result:

Corollary 3.1. If the functionu is completely monotonic, thef, satisfies the in-
equality

Fi(z)F1(y) < Fr(z+y)
forall z,y > 0.
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