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Abstract

If (K f)(x [’ (z,y)f(y)dy, = > 0, is a Hardy-type operator defined on
the cone of monotone functions, then weight characterizations for which the
modular inequality

Q! (/0 XQW\’f ﬂw) <p! < /0 ) P[Cﬂl‘>

holds, are given for a large class of modular functions P, (). Specifically, these
functions need not both be N-functions, and the class includes the case where
Q) o P~ is concave. Our results generalize those in [7, 24], where the case
Q o P! convex, with P, ), N-function was studied. Applications involving the
Hardy averaging operator, its dual, the Hardy-Littlewood maximal function, and
the Hilbert transform are also given.
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An integral operatof defined by

(K f)(x) = / ke ) dy, >0, f>0

is called aHardy type operataqrif the kernelk satisfies

(1.20i))  k(z,y) >0, x >y >0, kisincreasing inc and decreasing in.
. Weighted modular inequalities
(ll) k($, y) < D[k(x, Z) + k’(Z, y)], O<y<z<ua, for Hardy-type operators on
for some constanb > 0 monotone functions

Hans P. Heinig and Qinsheng Lai

k(z,y) = 1; k(z,y) = ¢(x — y), ¢ increasinggp(a + b) < D[p(a) + ¢(b)]

0 < a,b < oo; andk(z,y) = ¥(y/x), 1» decreasingy(ab) < D[ (a) + 1(b)]
0 < a,b < 1; are examples of kernels satisfying{) and hence define Hardy-
type operators. Contents
If k(x,y) has no monotonicity properties, satisfies (ii) and its reverse,khen

Title Page

is said to satisfy the Oinarov conditior(f]) and we writek(x, y) ~ k(x, z) + « ad
k(z,y),0 <y <z<uzx. 4 >

In this paper we study Hardy-type operators (and its duals) defined on the Go Back
cone of monotone functions. Specifically, weight functiéns, v are charac-
terized for which the modular inequality Clless
(1.2) Quit

Q! (/ QO (x)(K f)(x)]w(x) dx) <p! (/ P[Cf(x)]v(x) dx) Page 3 of 51

0 0

is satisfied for a large class of modular functiagn€), andf > 0, monotone. 3. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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For example, ifk = I, the identity operator an@dd< f|, then the weights are
characterized for whichl(2) holds with P, () increasing and® weakly convex
(cf. Theorem3.1). For generak, defined or) < f|, weight characterizations
are given for which 1.2) holds with P an N-function, P, P c A, and Q
weakly convex (cf. Theorer®.4). Specifically,Q o P~! may be concave. These
results together with the corresponding results whérie defined on the cone
of increasing functions are new. The cdse: ¢ < 1 < p for the generalx,
defined ord < f1, was unknown until this paper.

If P(z) = 2P, Q(z) = 29,0 < p,q < oo, 8(z) = 1, then our results reduce
to weighted Lebesgue space inequalities and in particulgrify) = 1, to the
weight characterizations of Arino-Muckenhoupf(p = ¢ > 1 w = v), Sawyer
[21] (1 < p,q < o) and Stepanov/?] (0 < ¢ < p, p > 1). The general case
whereP and@ are N-functions, such thaP and its complementary functioh
satisfy A, with Q o P~ convex (more precisely? < ) was studied by Sun
[24] with k(z,y) the convolution kernel.

To explain the scope of our results we require some definitions and known
facts.

A non-negative functio® onRR* is called anV-function if it has the form

(1.3) P(z) = /Ozp(t) dt, x>0,

wherep is non-decreasing, right continuous @ oc), p(0+) = 0, p(c0) = 0o
andp(t) > 0if ¢t > 0. Clearly
P(z) T

li =1 =
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Given anN-function P, then its complementary functidhis defined b)df’(y) =
sup,..o{xy — P(z)} and

(1.4) t< P Y)PMt)<2t, p(t/2)/2< P@t)/t<pt), t>0

holds. It is easily seen that i is an N-function so isP, and the complement

relation is symmetric.
If (X, 1) is ac-finite measure space, themaneasurable functiofi belongs
to theOrlicz-spaceL p(,, if the Luxemburg norm

£y =int {35 0+ [ 2 (V) o) <1}

is finite. TheOrlicz normin Lp(, is defined by

||fr|'p(m=sup{\ / fgdu‘: / ﬁ(g)dugl}.

We note that the Luxemburg and Orlicz norm are equivalent and

(1.5) | fllpey <1 ifand only if / P(f)du < 1.
X

Given anN-function P, we always use the Luxemburg norm i, and
define thaissociate spacé;,, of Ly, consists of thosg-measurablg, for
which the Orlicz norm

Il = sup {\ / fgdu‘ M lpgw < 1}
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is finite.
A weight functionu (v # 0, u #Z o) is a non-negative measurable and
locally integrable function oR*, and if du(z) = wu(x)dx, then we write

P(pn) = P(u). The standard duality principle in Orlicz spaces may be writ-
ten as -
sup 0TI _ [
o<s I fllpey  Nullpa)
For these and other facts see[14, 20].
Definition 1.1.

a) An increasing functiorP : R* — R™ is said to satisfy\s, (P € A,), if
there is a constarit > 1, such thatP(2t) < C'P(t),t > 0.

b) A strictly increasing functior) : R™ — R is weakly convex(Q € A?),
if Q(0) =0, Q(o0) = oo and2Q(t) < Q(Mt), t > 0, for some constant
M > 1.

c) ([16)) If P and(@ are increasing, then we write < @), if there is a
constantd > 0, such that

ZQ oP a;)<QoP! <Azaj)

is satisfied for all non-negative sequen¢es} ;<.

A convex function@ satisfying@(0) = 0, Q(c0) = oo is weakly convex
(with M = 2). However, the weakly convex functio@(¢) = t*, ¢t > 0,
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0 < a < 1, is not convex, and)(t) = In(1 + ¢), t > 0 is not weakly convex.
Observe also that if) o P! is convex, therP < Q.

The main result of this paper (Theorél) characterizes the weigMsw, v
for which (1.2) is satisfied for decreasing > 0 with P an N-function, P,
P e A, andQ weakly convex. This characterization is expressed in terms of
estimates involving covering sequences.

Definition 1.2. A strictly increasing positive sequenée; } ;7 is called a cov-
ering sequence if the sequence is of the fgnm}>> _ or of the form{z;} 2,
Weighted modular inequalities

where M and/or N is finite. In the latter case we defingy,_; = 0 and/or T T G R
Tpm41 = OQ. monotone functions

In some instances covering sequences safj§fy = 2", k € Z, wherevis a RS IO G T
weight function. If2V < [*v < 2V*! thenin the case" < [“v < 3.2V

we setzy = oo and the covering sequence {is; }j_foo In the remaining Title Page
case we sety 1 = oo and the covering sequencefis;}__ . Under these =

1 T4 h1 ontents
conventiong*~* < fmj v<3-2" " for0 < x; < oo.

The manuscript is divided into four sections. The next section contains the 4« 44
weight characterization of a modular Hardy-type inequality for Young’'s and < >
weakly convex functions by Qinsheng Lai9). As a consequence a corre-
sponding result for the dual operator follows. In addition, modular Hardy and Go Back
conjugate Hardy inequalities (Lemn2a3) are given. Sectiof3, the main re- Close

sults, contain the weighted modular inequalities for the identity operator (The- _
orem3.1) and Hardy-type operator (Theoreil) defined on decreasing func- Quit
tions. Some special cases given there are needed in Seécaod seem to Page 7 of 51
be new even in the Lebesgue space case. In the last section results for the

Hardy operator on increasing functions are given. Moreover, the bounded- 2 inea. pure and Appl. Math. 1(1) Art. 10, 2000
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ness of the Hardy-Littlewood maximal function and the Hilbert transform in
weighted Orlicz-Lorentz spaces are characterized.

The notation is standar®* andR denote the non-negative real and real
numbers respectively, whil& denotes the set of integers. The symigl
stands for the characteristic function of a #&t All functions are assumed
measurable and, v, w, 0 denote weight functions lf is a weight function

= [Lu(z)dz,U(z) = [ vandU*(z) = [ u, (x > 0). Instead of non-
mcreasmg non decreasmg we shall say decreasmg and increasing respectively,
otherwise we shall prefix it by “strictly”. If > 0 is increasing (decreasing) we Weighted modular inequalities
shall write0 < f7 (0 < f|) and similarly for sequences. Expressions of the for Hardy-type operators on
monotone functions

form A ~ B are interpreted to mean thdt/ B are bounded above and below
by positive constants. Constants are (with the exception of those of Definition
1.1) denoted byB andC and they may have different values at different places.
Inequalities, such ad (2), are interpreted to mean that if the right side is finite, Title Page
so is the left side and the inequality holds.

Other notations and concepts are introduced when needed.

Hans P. Heinig and Qinsheng Lai
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In order to prove weighted modular inequalities for Hardy type operators de-
fined on the cone of monotone functions, a number of results are required. The
first result (Theoren®.1) by Q. Lai [L9] is a weight characterization of the
Hardy-type operator for which a weighted modular inequality is satisfied. This
theorem extends corresponding work of 4, 18, 22, 24] to Young’s functions

P and weakly convex function@ without the assumption thgto P~! (or more
preciselyP < ()) is convex.

Weighted modular inequalities
for Hardy-type operators on
monotone functions

Theorem 2.1.([ 19, Thm. 1]) Suppos& is a Hardy-type operator” a Young's
function and@ weakly convex. Let, w, p andv be weight functions, then the

i i H P. Heini insh Lai
modular mequallty ans einig and Qinsheng Lai

0! (/ QO(x)K f(z)|w(x) dx) < p! (/ P[Cp(z) f(z)]v(z) dx) Title Page
0 0 Contents
is satisfied for allf > 0, if and only if there are constant8 > 0, such that, % =
3 Tj+1 9(.7;) k(x’.>X(17 x) _ 4 }
1 J j—1,Tj 1
Q <Z/x Q@ Iz ‘ “op . w(z)de | <P Zl/gj
> (e50) j Go Back
and Close
_ i+l O(x)k(z,2;) || Xz, 1.25) - Quit
1 b j—1:%5 1 .
© (Z / @ [ B gjvp |5 wiz)de | < P Z 1/¢ Page 9 of 51
J T P(Ejv) J
hold for all positive sequences; } ;e and all covering sequencgs; }cz. 3. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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A corresponding result for the conjugate Hardy-type operator
(K@) = [ kyohl)dy, 2 >0 b0

wherek satisfies {.1), also holds. In fact, writing(z, y) = k(o) andh(y) =
h(1/y)/y?, then a change of variables shows that

(Fh)(1)) = / e, y)h(y) dy = (KR)(@)

is a Hardy-type operator sindgz, y) satisfies the same conditions/ag:, ).
Writing g(z) = g(1/z) andg(z) = g(1/z)/2? it follows that

o ([ avwrne i) - o ([ eptwriat) a)

and

p < /0 " PICa2p()h(@)]i(2) dx) _ p ( /0 " PICp(a)h()]u(z) dx> |

Also .
k('? x_)X(l/xj,l/zj,l)

_ J
P(z;0) cipY

k<xj7 ')X(CC]-—LJ:]-)
€jﬁT)

Weighted modular inequalities
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monotone functions
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and

P(ejv)

HX(Zj_l,Ij) — HX(I/:Ej,l/:Ej_l)
P(ejv)

€;pU €;pU
Therefore, ifl/z; = y_y, k € Z, then{y,},cz is also a covering sequence,

wheneveHz;},cz is. Thus, the following characterization follows from Theo-
rem2.L

Proposition 2.2. If K* is the conjugate Hardy-type operatdt,a Young'’s func-
tion and@ weakly convex, then

o ([ v nwlnwar) < p ([T Picpwn@le) d)

is satisfied for all, > 0, if and only if there is a constar® > 0, such that

o (Z / e|5 p(m)] w(z) dx) <p (Z 1/@)

and
v (Z /yyjl ¢ P(e-v)] v dx) =0 (Z 1/€j>

holds for all positive sequencgs; } ;7 and all covering sequenceg; }cz.

k('7yj)X(ijyj+1)
£;pU

0(x)k(y;, )
B

X (59541 )
£V

Note that if) is an N-function, then( is convex and in particular, weakly
convex. Hence Theorethland Propositior2.2 hold in this case.
The following result is required in the next section.

Weighted modular inequalities
for Hardy-type operators on
monotone functions
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Lemma 2.3. Suppose” and P are N-functions,V (z) = [/ v, V*(z) = [~ v
andwv is a weight function.

(i) If V(c0) = o0, then there exists a constafit> 0, such that

2.1) /OOOP {ﬁ /Ova} o(z) dz < /OOO PICf(x)]o(z) dx,

is satisfied for allf > 0 if and only if P € A, and

Weighted modular inequalities

00 < fu o0 for Hardy-type operators on
(2.2) / P {/ 7] v(z)de < / P[C f(2)]v(x) dx, monotone functions
0 T 0

Hans P. Heinig and Qinsheng Lai

is satisfied for allf > 0 ifand only if P € A,.

(i) If V*(0) = oo, then Title Page
o 1 o 0o Contents
. <
(2.3) /0 P [V*(m) /x fv] v(x)de < /0 P[Cf(z)v(x) dx, « NS
- >
is satisfied for allf > 0 if and only if P € A,, and ‘
- . - Go Back
(2.4) / P {/ %} v(x)de < / PICf(x)v(x) dz, Close
0 0 0
Quit

is satisfied for allf > 0 if and only if P € A,. Page 12 of 51
age 12 0

The conditions/ (c0) = oo andV*(0) = oo are only required in the neces-

Sity part of the prOOf_ J. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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Proof. First observe that iff (z) = f(1/z), v(x) = v(1/x)/2?* then via obvi-
ous changes of variable<.8) reduces toZ4.1) with f replaced byf andv by
v. A similar change of variable shows th&t.4) reduces to4.2). Note that
V*(1/t) = fot v. Therefore it suffices to prove only part (i) of Lemraz.

Next we observe thaR(1) is equivalent to

(2.5) /Ooo P Uoo %} o(z) dz < /OOO PICF(2)]v(z) dz.

To see this, recall that by!] Prop. 2.5] (see alsdl.]) that (2.1) holds if and
only if for everye > 0,

| T fllpeo) < Clfllpey Where Tf(x /f

But by the standard duality principle in Orlicz spaces this is equivalent to

T*g
X0

<C H H ,  Where T"g(z) =v(z) /:0 ﬂdt

Blew) P(ev) V(t)
is the conjugate operator @f. By homogeneity of the norm and again applying
[4, Prop. 2.5] it follows that this inequality is equivalent to

/OOO P [U(lx) (T*g)(:c)} o(z)dz < /OOO P {C;g(_g)] o(w) dr.

which is 2.5) with g = fv. Hence we only need to show thatJ) is satisfied,
ifand only if P € A,.

Weighted modular inequalities
for Hardy-type operators on
monotone functions
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Let P € A, and definef*(z) = f(z) if = > 0 and zero otherwise,
v(|z|)dx = du(z), then

1 * 1
W/o fo< (M, fM)(x) = s;g[)m/lfﬁiu, I eR.

Clearly M, is sublinear and of typé>, o), and weak typg1, 1), with respect
to du. Now the argument of, p. 149-150] shows tha? € A, is sufficient for

Weighted modular inequalities

/OO P (MMfJF(;U)) du(a:) < /00 P (Cf(x)> du(z)’ for Hardy-type operators on
0 0

monotone functions

from which (2 l) follows Hans P. Heinig and Qinsheng Lai

To prove that 2.1) implies P € A, it suffices (seef, Prop. 3]) to prove

that there exists & > 0, such thap(dz) < 1/2p(z), wherep(xz) = P’(x) with Title Page
p(O) = 0. ) Contents
By Theorem2.1, with @ = P, k(x,y) = 1,0 = 1/V, p = 1/v, f replaced
by fv,z; =r >0, z;_1 = 0andz,;; = oo, (2.1) implies 44 >
00 1 X0 < >
P H o <1
/T {B V)l e 15(51)):| v(t)dt < 1/e Go Back
for all = > 0 andr > 0. But by the definition of the Luxemburg norm arfd4) Close
Quit

Page 14 of 51
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witht = 1/(e V(r))

1 "L /1
o [ (Hawa<)
Pev) € 0 A

H X(0,7)
g

Hence @.1) implies

/TOOP {22&%) P (%)} v(t)dt <1/e.

If 2 = L) P‘l( 1 )>,this inequality is

2BV (t) eV(r
P~ )/ (2B) p 2B

0 x eV(r)P~! <€V(T)>

Writing
1
= p!
’ (evm)
one obtains
y/(2B) p
(2.6) / ggf) dx < 2B P(y)/y, y > 0.
0

Weighted modular inequalities
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Then it follows from (L.4) thatfy/(w) ’@ dz < 4Bp(y). Now let0 < n < 1,

0
then on integrating by parts

> log(1/n)p(ny/(4B)).

Choose so thatlog(1/1) > 8B andé = n/(4B), thenp(dy) < 3 p(y). This,

as was noted, implies bys[Prop. 3] thatP? € A.,.

Weighted modular inequalities
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Our first result concerns the identity operator defined on monotone functions.

Theorem 3.1. Suppose” and () are increasing and” is weakly convex. Then

ey o ([ Qo) <p ([T Per@ )

holds for all0 < f|, if and only if there is a constar® > 0, such that, Weighted modular inequalities

(3.2) for Hardy-type operators on
monotone functions

Q_l (2]: /:ch . Q [% 9(I>] w(:p) dx) S P_l (23: P(gj)/ o U(ZL‘) dI) Hans P. Heinig and Qinsheng Lai

Zj

is satisfied for all non-negative decreasing sequeregp;c; and the covering Title Page
sequience j Contents
{z;};ez such thatf;” v = 2%, k € Z.

Similarly, 3.1) holds for all0 < f7, if and only if 3.2) is satisfied for all <44 44
non-negative increasing sequendes} ;cz and the covering sequenée; } <z, < >
satisfying [~ = 27"

! Go Back
Proof. We only prove the first part of the theorem since the argument for the E—
second part is similar.

Let {¢;};cz be any decreasing sequence, thfen) = > €jx(z;,2;,1)(2) IS Quit
decreasing and substitutirfgnto (3.1), (3.2 follows with B = C. Page 17 of 51
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Conversely if 8.2) holds then, sincg” v = 2" and2P(z) < P(Mu),
M>1
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7T Title Page
=p! / P[M B f(z)]v(x) dx) . Contents
0
. <44 >
This proves Theorerf. L O
< >
If Q o P~!is convex, TheorerB.1 has the following form: Go Back
Corollary 3.2. Suppose® and( are increasing,P is weakly convex anff < Close
@. Then 8.1) holds for all0 < f|, if and only if for alle > 0 andr > 0, there Quit

is a constantB > 0, such that,
Page 18 of 51
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Similarly, 3.1) is satisfied for alb < f7, if and only if

B4 Q" ( | @ {@ P ( frfov)} w(z) dx) < P )

is satisfied.

Proof. By Theorem3.1is suffices to show thaB(2) with increasing (decreas-
ing) sequencege; },cz is equivalent to §.3) (respectively §.4)).
Firstfix j = ky € Z and letz;, = r > 0. Then for fixeds > 0 defines,, =
e/ [, v), if m < ko and zero otherwise. Clearl,,}.cz is decreasing

and by @8.2)

(ol ()
(S5 (g
L (Z];O /x7+1 { x 53} w(z) dx)

< p! (%;P (P—l (fo )) /mﬁlv(x) dx) — P (o).

To prove the converse, recall that sinées weakly convex, there is al > 1,
such thakP(z) < P(Mz). Hence withy = P(Mx)

(3.5) P

"y) < MP'(y/2), y>0.
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If {x,};cz is a covering sequence satisfyirfg’ v = 2* andn; > 0, to be
determined later, then by (5) and §.3) with ¢ = n; andr = x4,

el ()
< [TeF e ()| @ < o P

w(z) dz

SinceP < @), summing ovek € Z yields Weighted modular inequalities
for Hardy-type operators on
monotone functions
Tjt1 O(x )
Z / Q ﬁ p1 <f$:]j‘1 U)] w(:L') dx Hans P. Heinig and Qinsheng Lai
jo z;

<ZQOP 77] <QoP (ZA%>: Title Page

Contents

whereA is the constant arising from conditidh < (cf Defn.1.1c) ). Now <« >
choose; so that{n;/2"} is decreasing, heneg = P~* Anj/f“]+1 defines

a decreasing sequence. Therefore ¢ >
9( ) P( ) Go Back
. ZTj+1 T . 5]‘ Tjs1

(5 oftip = (B) e - (S ) G
J Quit

and applying 8.5) a-times so thaf*/A > 1, then Page 20 of 51
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and the result follows.
If 0 < f7, fix ky € Z such thatr;, = r > 0 and define

Em = Pl(e// v) if m > ko and zero otherwise.

Then{e,, } mez is increasing and the previous argument shows thé} {ollows
from (3.2). Also if {z;};cz is a covering sequence such that v = 2% and

n; > 0, then by 8.5 and @.4), since2 f;f“ v=27"%,

ZTj+1 n;
/xj Q pt Tﬁlv w(x) dx
< / Q blz) P! (%)] w(z)dz < Qo P (n)).
2 B fwj v
Summing over:, and choosing; so that{ 7%; } is an increasing sequence, then
with
An.
€5 = p! (ij,i}fv> , k e Z,

defines an increasing sequence, wheiie the constant arising from the condi-
tion P < (). The inequality 8.2) now follows as before. O

0(x)

MB

Corollary3.2was proved by J. Q. Sur{, Lemma 3.1] in the case when
and@ are N-functions (hence convex). P(z) = 2P, Q(z) = 24,0 < p < g <
oo, one obtains (witld(x) = 1) the well known weight conditions {[., 2])
which characterize3(1). If 0 < ¢ < p < oo we have:
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Corollary 3.3. Let0 < ¢ < p < occand1/r = 1/q — 1/p, then the following

are equivalent:

o ([ se([ )]

is satisfied for alb < f].

(3.7) / [WYPy=1Pry = B < oo,
0

(3.8) > [w(E)(E)")" = B < o0,
i
wherew(E;) = [V w, v(E;) = [,7*'v and the covering sequende;}
satisfiesV/ (z;) = 2*.
1/q

<B

1/p

(3.9) [Z elw(E)) > elu(Ey)
j j

holds for all decreasing sequencgs; };cz and covering sequencds; } with

V(z;) = 2*F. (Recal: W(t) = [y w, V(t) = [jv.)

If 0 < f7 the above statement holds with and V' replaced byi/* and
V*, respectively, the covering sequenice } satisfiesV*(z;) = 27% and{e,}
is taken to be increasing.
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Proof. We only prove the corollary in the case< f| since the case < f71is
proved, with obvious modifications, in the same way.

The equivalence of3(6) and (3.9 follows at once from Theorer.1 with
Q(z) = 2%, P(x) = 2P, 6(z) = 1. Since the equivalence d3.©) and @3.7) was
proved in P1, 27, it remains to proved.7) = (3.8) = (3.9).

Sincer/q = r/p+ 1 andw(E;) = [ w, it follows that

Tj
r Tj+1 t
w(Ej)r/q = _/ / w w(t) dt Weighted modular inequalities
q xj x; for Hardy-type operators on
ro [T monotone functions
S g W(t)r/pw(t) dt Hans P. Heinig and Qinsheng Lai
Tj
on integrating. Since(F;) = 2% = V/(z;) it follows therefore that Title Page
Titt Contents
S tw(B) o)y < S [ e ey ai
j 9757 Jay <4< 44
or/p Tjt1
<0y / V)W () e dt < >
T G e Go Back
r/
_ et Br. Close
1 Quit
Hence 8.7) = (3.9). Page 23 of 51
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> [w(E;)v(E;)~9P]"/1 = B < oo implies

q/p
S (B (Ey) 1 < B (z nf/q)
7 J

for any positive sequendey, } in ¢7/9. Now choos€[r; } so thaty)/? = ejv(E;)"/? =
£;2%/P with {¢,},cz decreasing. Thus(8) = (3.9), which completes the proof.
O

Note that if0 < g < p = 1, then withg = -°-, a > 0, r = o and one shows

at+l’
that
By

21 2B, <2(1+a)/B,.
S0t aye = Bos21+a) B

Here of course

. 1/a 1/a
By = ( / W“V‘O‘w) and B, — (Zw(Ej)aw(Ej)—a) .
0

j
We now give the main result of this section.

Theorem 3.4. SupposeP is an N-function, P and P satisfy theA, condition
and Q weakly convex. If{ is a Hardy-type operator defined on the cone of
decreasing functions, then

10 o ([ QbR ar) < p7 ([T Pies@le) ao)
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is satisfied, if and only if there is a constait > 0, such that for all positive
sequencess; } <z and all covering sequencds; }jcz withi(z) = =

(3.11) ]
o (o[ o[t | uira) < (52)
(3.12) ]

= (Z /Q Ha)kz. ) ‘m;lv,xj)i p(sj@] w(z) dx) <P (Z l)

(3.13) ]
o (2] o)) < (£2)

are satisfied, and for all positive decreasing sequeRegp;cz and the covering
sequencgx;} ez satisfying[,” v = 2"

(K1)X(2;-1.2)
€jV

(3.14)
o <Z /:a+1 0 {538@)(;(1)@)1 w(z) da:) < p <Z P, /:JH U)
is satisfied.

Proof. (Sufficiency.) The idea comes from3]. We may assume that has
the form f(z) = [~ h, h > 0, for once the result has been proved for such
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f a Iimiting argument (see e.g.24]) gives the general case. Clearly since

= Jy k(z,y)dy

(K f)(x) = / “k(a,y) / " h(t) dedy

= (K1)(2) f(x) + /Ox h(t) (/Otk(x,y) dy) dt.
But since

1 1 T . T
W_V(:E):/t V(y)“v(y)dy and /Oh(s)V

it follows again on interchanging the order of integration that

/0 ") /0 k(a,y) dyt
:/Ox /Otk(x,y)h(t)V(t
_ (1x /Ik(xy)/y h(
0 V(s / V[ aeyv ( /0 k() dy) dtds
o [ s
(/

HV (t) dtdy

1 X
< / k(x t) dtdy
(x 0

V(s T,y dy) / F(t)v(t) dtds

o<

s)ds < /090 f(t)v(t)dt
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/ ft)v(t)dt + I(x)
(by deflnltlon of I(x)) respectively.

Now sincek(x,y) < D[k(x,s) + k(s,y)], y < s < z,

[(x)gD[/Oxk(:c s /f ) dtds
¥ / v ([ s (e as

F(s)=V(s)v(s)s /OS fv,

(K f)(x) < (K1)(2) f(x) + (K1)(x
+D/ (x,s)F ds+D/ Kl )F(s)ds

=L+ I+ I3+ 1) (x),

and writing

one obtains

respectively. Now

4

O(2)(K f)(x) < O(x) Y Li(x) <46(z) max I,(z) = 46(x) Ly (@),

s=1,2,3,4
i=1
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wheres(x) € {1, 2, 3, 4}, and since() is increasing and satisfie)(z) <
Q(Mz), M > 1, we have

QO(z)(K f)(2)] < Q[40(x) Ly (x)]
Q[46(x)1s(2)]

] =

=1

»
W~

IN

QUMY (x)I(x)].

AN,

Weighted modular inequalities
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Integration yields
Hans P. Heinig and Qinsheng Lai

4
|| Qe@uEn@iE <3 [ QuArs @it e e Page
. . Contents
and therefore it suffices to prove that
44 44
(3.15) / QUM0(2) . (2)w(z) dz < Q o P! < / PICF(2)v() d:c) y >
0 0
Go Back
s=1,2,3,4is satisfied.
Sincel;(x) = (K1)(z) f(x), then by Theorer.1with 6 replaced by (z)(K1)(x), Close
(3.19 holds if and only if 8. 149 is satisfied. Quit
Next, sinced < f| soisy 5 [y fv, and sincds(x) = (K1)(2) 55 Jy fv, Page 28 of 51
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to

/OOO Q[4AM?*0(x) Iy(2)|w(z) dr < Q o P (/OOO P {C V(lx) /Om fv] v(z) d:p)
<Qopt (/OOO PICF(2)]v(z) da:) |

Here the last inequality follows fron2(1) of Lemma2.3.
Next, I3(x) = D(K F)(x), so that by Theorerd.1with p(xz) = V(x)/(zv(x))

Weighted modular inequalities
for Hardy-type operators on

* 2 o p1 > 1 * monotone functions
A Q[4M 0<x>[3($)]w<x> = Q i (/0 i |:C V(l‘) A fv} v(x) dm) Hans P. Heinig and Qinsheng Lai
<Qop! </0 PICF(@)o(x) dx) |

Title Page
Here the first inequality holds if3(11) and (.12 are satisfied and the second Contents
follows from (2.1) of Lemma2.3.

Sincel,(z) = D [ (K1)(s) @ ds we apply Theoren2.1with k(z,y) = 1 14 dd
andp(z) = V(z)/(v(z)(K1)(x)), so that < 4
o ) 1 x Go Back

[ emrsoneiuwa < gor ([Trle o [ voa)
0 0 Vi(z) Jo Close
<o ([ Peswina) Qi
0
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(Necessity.) Since < f|, (K f)(x) > (K1)(z)f(x) so that 8.10 implies
(3.1) with 6 replaced byd(x)(K1)(x). Now Theorem3.1 applies if P is an
N-function and) weakly convex and s®(14) follows.

To prove that 8.10 implies 3.11) observe first that for fixed,

ik('rj7 ')X(l’j—hzrj)

3.16
(3.16) v

P(ejv)

is bounded. If this is not the case, then there is a sequigfigeof non-negative
functions satisfying|C f,| p¢,») < 1, with C' the constant of3.10, and a
sequencéga,, } with a,, — 0o, n — oo, such that (by definition of Orlicz norm)

for eachn

dx

Y ak(xg, @) fo()v(7)
RS C‘/gcj_1 V(z)

o )<"(f)”(/fdy> i
_ / / x], )”(f”) dady

sc/ k(s ) Faly) dy,

0

IN

[ fnlzolz) gy But since

sincek(x;, -) is decreasing. Her&, (y) = |,° =75

/000 P[Cfn(x)]ejv(x)dr <1,
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(2.2) of Lemma2.3and (.10 show that

P (D)2 ([T pen )

where(; is the constant of4.2). But this is a contradiction since, — oc.
Hence 8.16) is bounded.

Now supposed.1]) fails to be satisfied. Then for anfy > 0 there exists a

covering sequencgr; } jcz and a positive sequenge, } ;7 such that

SRR

J

k(a:j, ')X(x_y'—lij)i
5]-\/

0(z)
2BC,

where( is taken to be the constant ¢f.¢). Now for k& € Z, choosef; > 0,
such that supfy C (x;_1, z;) with

(3.17) /000 P[BC, fj(x)leju(x)dr <1

) ] w(z) dx)
P(ej;v)
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and

U B )Xy _ / wk( xj, (x)v(x) .
2301 €jV P(Ev B Tj—1
< [ blasnEi) dy
0
where
/ iz v(fv
V()
Let f(z) = >, fi(z) and F(z) = [ (f/)( ® dt, then by £.2) of Lemma

2.3, (3.17) and our assumption

Pl ( /0 " PBF@) () dx)
< p! ( /0 " PIBC, f(2)]u(x) dx)

=p! Z/:: P[BC, f;(z)]v(x) dx)
<P 5)
- Q_l Z /%jﬂ Q

k’(%ﬁ ')X(ijlv%‘)i
Ejv

) ] w(x) dm)
P(ejv)

2BC,
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IN

o (Z / "o [e<x> [ e wte) dx)

o ([ aumnwlue )
P ([ Per@e ).

where the last inequality i3(10). But this is impossible foB > C' and hence

| A\

IN

Weighted modular inequalities

(3.11) must be satisfied. for Hardy-type operators on
To show that8.12) and 3.13) are satisfied one proceeds as before. First one menotone functions
shows that both Hans P. Heinig and Qinsheng Lai
X(xj_l,xj)i (Kl)X(x]'—hx]')
— and —_— :
H 8jv P(sjv) H €jV P(sjv) Tide Page
Contents
are bounded for fixed. Then withf(:p) andF'(z) defined as above one has
<4< 44
/vJ J]f]( ) / / fJ JZU d.dey 4 }
21 V(J: (x)
Go Back
and for 3.13 Close

—

IN

R ydy)%d Qui
[k

3= Page 33 of 51
Jo(z)
(xj,y / fj dxdy.
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Inequality 3.12) is then obtained as3(11) was shown to hold. To prové& (13
assume to the contrary th&t {3 fails. Then for anyB > 0, we have

<r ([ Pes@le @)

< (5)

<o (5[ o[ | ] o)
(L o
<o (z " 0o [ ko)) o )

A RIS T >dx)

< p! ( /0 " PICF@)u() dx)

from which the contradiction follows faB > C'. This proves Theore®.4. [

If k(x,y) = 1, 6(z) = 2%, —1 < a < oo, the conditions §.11), (3.12),
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(3.13 coincide and sincéK'1)(x) = x we get the following corollary.

Corollary 3.5. Let P and(@ be as in Theoreri.4anda > —1. Then

Q' (/OOOQ [w /0 f] w(z) d:c) < p </OOO PICF(2)]v() d:c)

is satisfied for all0 < f |, if and only if for all decreasing sequenceés;};cz

and the covering sequenge;} satisfying[;,” v = 2*,
Tj+1
ZP £j / v
(3.19)

(3.18) Q! (Z /;J'H 0 [%Icﬁ-l} w(z) >
([ e[, |ron) < (52)

holds, and
5%
is satisfied for all positive sequencgs } and all covering sequences; }.

(nglvzj)

Ejv

x®
B

If Q is also anV-function, then a result corresponding to Corollargholds
also for the dual operator.

Corollary 3.6. Let P and@ be N-functions andP, P € A,. If a > —1 then
(3.20)

Q! (/OOO Q [/OO tef(t) dt} w(x) dx) <p! </OOO P[Cf(z)]v(x) dm)
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is satisfied for alb < f|, if and only if

(3.21)
~ vi L1 BC ¥5) Xy mi40) _ 1
1 3 )X (59511 1
Q= H e w(z)dr | <P —
(z]: /yj—1 sjv P(ejv) zj: €j
and
(3.22)
Yj
’ y], ‘X(yj’yj-&-l) w(z)de | < P! 1
(Z/ gjv P(Ejv)] N ZJ: gj

holds for all positive sequences;};cz and all covering sequenceggy; };cz.

Here .
k(y, z) = { In(y/x) if o= —1,

Yottt — ot ifa > —1.

Proof. By [7, Thm. 2.2], 8.20 is equivalent to

([l e o] o)

<o ([T R[] )
h > 0. However, since

/ o / 5) dsdt /:ok:(y,x)h(y)dy,

the result follows from Proposition.2with 6(z) = 1, p(z) = V(z)/v(z). O
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Remark3.1

() Let P(x) = 2P, Q(z) = 29,0 < ¢ < p < oo, p > 1 anda = —1 then

(3.19 is / /
(Z 5?1U(Ej)> <C (Z E?’U(E}-)) ,

wherew(E;) = ijj“ w andv(E;) = fxij“ v. But by Corollary3.3this is
equivalent to

Weighted modular inequalities
for Hardy-type operators on

/oo [Wl/pv—l/P]T'w o l B l B l monotone functions
9 - .
0 r q p Hans P. Heinig and Qinsheng Lai

Also, if 7; = £, ” then (.19 takes the form

Title Page
Lit1 % “ 3 Contents
Zn]- (/ ™ w(x) d:v) (/ PV ()P o(t) dt) <C (Z 775'“) :
J i *i-1 j 44 44
But the dual space d/? is £"/%, where; = * — | and hence3.19 is in 4 d
this case Go Back

U Close

i1 r/q 2 r/p
/ r w(r) dx) </ PV ()P o(t) dt) <C. Quit

J J—
Page 37 of 51

j <
(Cf. [21, Thm. 2], where this was proved in cabe ¢ < p < oo and 2]
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(i) Considering Corollang.6in the caseP(z) = 2, Q(z) = 29,1 < ¢ <
p < 00, a = —1 we see that3.21) takes the form

” v , q/p' q/p
Zﬁj (/ w) </ In? (t/y;)V(t) P ou(t) dt) <C (Z n;{’/Q) 7

where again); = 5]._‘1/”. But again sincé’/? is the dual of??/ it follows
that in this case3.2]) is equivalent to

Weighted modular inequalities

r/q r/p' 1/r for Hardy-type operators on
Yj Yji+1 , , monotone functions
p . -p <
Z </y] ) w) </y] In (t/y])V(t) U(t) dt) - C’ Hans P. Heinig and Qinsheng Lai
; _
where. = - — . Similarly, (3.22) takes the form Title Page
y r/q v r/p' 1/r Contents
3 / I (y; /) () da / V()P o(t) dt <c “« | »
i Yj—1 Y5
< >
=2 — , forall covering sequenceg; } jez. Go Back

Hence these two conditions are necessary and sufficient for the inequality Close

([or ([ 5] ) e ([ sorsionas) =TT

to be satisfied for all < f].
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In order to obtain weight characterizations for which modular inequalities for
the Hardy-type operator

(K f)(x) = / k) ) dy,  0<fI

are satisfied, we require also that the kefndkfined by

Weighted modular inequalities
for Hardy-type operators on

(4.1) /;Z(:E, y) = / ]{J(ZL’, t) dt monotone functions
Yy

Hans P. Heinig and Qinsheng Lai
satisfies also conditions (i) and (ii) of.(l). That is,

4.2 k(x,y) < D[k(x, 2) + k(z,9)], O<y<z<ua. Title Page
Contents
Note that ifk(z,t) = (z — )%, a > 0 thenk satisfies 4.2). On the other
hand ifk(z,t) = In(z/t) thenk does not satisfy4.2) for any D > 1. S dd
The principal result for Hardy-type operators defined on the cone of increas- < >
ing functions is the following: P —
Theorem 4.1. SupposeX is a Hardy-type operator andl defined by4.1) sat- Close
isfies ¢.2). Let P be anN-function withP, P € A, and () weakly convex. _
Then the modular inequality QUi
(4.3) Page 39 of 51

Q' ( | @t o) da:) <P ( | pes@ie dx)
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is satisfied for alD < f7, if and only if there is a constari? > 0, such that,

(4.4)
xJ+1 (xj’ ')X(I;1 ;) . 1
E— w(z)dr | <P —
<Z / ‘ v P(eyo) EJ: £
and
(4.5)
xﬂ“ k(z,2,)0(x) || X(2;-1.2, _ 1
Z/ j) ( ) ‘ ( 1* ) w(l') dr | <P ! Z_ Weighted modular inequalities
8J'V P(gjv) i €j for Hardy-type operators on
monotone functions
holds for all positive sequences;},cz and all covering sequences;; }jcz. Hans P. Heinig and Qinsheng Lai
Here againV*(z) = [° v with V*(0) = .
Proof. Without loss of generality we may assume tbfdnas the formf(z) = Title Page
Jy by b > 0(cf. [24, Lemma 3.2]). Sinc&*(z)~* = [ V*(¢t)~2v(t) dt, chang- P—
ing the order of mtegratlon we show that
. Y <4< 44
k1)@ = [ Kww) [ hls)dsdy «
0 0
z _ V*(s) Go Back
= h(s)k(x,s ds
/0 (s)k(z, ) V*(s) Close
_ / h(s)(, 5)V*(s) / V*(6)20(t) dids Quit
0 0
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< / V) 00k, 1) / " () (y) dydt.
) <y k(

Hence if F(t) = V*(t) v ( ) [ fu, thenK f(x
Theorem2.1with p(z) = V*(z)/v(z)

| e @i i< [T jow [ reoro dt} wle)ds

oot ([ 1[5 o)

if and only if (4.4) and @.5) are satisfied. Now4(3) follows from (2.3) of
Lemma2.3.
To prove necessity one proves first that for fixed

t) dt and by

is bounded. But this is proved (via contradiction) in the same way as the bound-

edness off.16) in the proof of Theoren3.4, only nowk andV are replaced by

k andV*, respectively. To prove that(4) is satisfied assume to the contrary

that for everyB > 0 there exisf{z;} and{e;} such that

(Z / o P(Ejv)] w(z) d:c) S p! (ZJ:

k(%v ')X(% 1,%5)
g;V*

ZL’

2BC,
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By duality of Orlicz spaces there exists > 0 such that supfy C (z;_1,x;),

[ P[BC fjleju < 1and

1
2BC,

E(xj? ')X(%‘—h%‘)
€jV*

" k(y,7) f(@)v()
e </x Ve (2) dzx.

j—1

Nowletf = > f; andF(z) = [ {2, soF1. Also

Y k(zy,2) fi(x)v(@) 5 fi@e) (o
/le V() = o V(x) / k(zj, s) dsd
:/Ojk(xjas) ; %&()x)dmds
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Tjt1 zj
<@ Z / Q[o(x) / k(x;, s)F(s) dsjw(x) dz
<Q (/ Qo) (KF)u(e) do
<r ([ [0F<>]<>dx)-
0
Here the last inequality is}(3). But this is a contradiction foB > C'. Hence Weighted modular inequalities
(4.4) is satisfied. for Hardy-type operators on

. .. . monotone functions
The proof of ¢.5) is similar, only nowf; is chosen so that
Hans P. Heinig and Qinsheng Lai

1 S Tj .
Xepan | 7 LW,
2C éTjV P(e;v) Ti_1 Vv (y) Title Page
and Contents
- “ fi(y)o(y) / — fity)v(y) “ dd
k(x, dy < [ k(z,y) =~ dy
(z, ;) ; V*(y) o (,9) V*(y) < >
< / ];7(:15, y) fj(y>v(>y> dy Go Back
f Close
. JINIJZNIJ
_/ (x,s / V* y dyds Quit
x € (z,z;+1). We omit the details. This proves the theorem. O Page 43 of 51
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Remarkd.1 (i) If V*(0) < oo, Theoremd4.1 still holds, provided that in ad-
dition to (4.4) and @.5) the weight condition
(4.6)

([ ol ()l sos) ()

is also satisfied for alt > 0.

(i) If @ is anN-function and hence convex, the result may also be proved via

the duality principle given in{, Thm. 2.2]. Weighted modular inequalities
A consequence of Theorefnlis the following: or Hn?cr%gﬁg mirt?;?]rss o
Corollary 4.2. Hans P. Heinig and Qinsheng Lai
(7) ([10, Thm. 2.1]) If1 < p < ¢ < o, then
o /1 o . 1a - 1p Title Page
4.7) (/ (—/ f) w(z) dw) <C (/ fpv) Contents
0 T Jo 0
is satisfied for alb < £1, if and only if, for all¢ > 0 4 dd
. \/a < 4
(/ (x —t)9z™w(x) dx) V()P Go Back
t
Close
and .
. 1 . / / 1y Quit
</ r w(x) dx) (/ (t—2)P V*(x)Po(x) dx) Page 44 of 51
t 0
are bounded. J. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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(17) If 0 < ¢ < p < o0, p > 1 then @.7) is satisfied for alb < f7 if and only
if for all covering sequencefr; }

(4.8)
- $j+1 r/q xj r/p' 1/7‘
Z / xw(x) dx / (z; — )P V*(x) P v(x) do <C
j Zj Tj—1
and
I Tji1 r/a z; /v v Weighted modular inequalities
Z / (1; —x -)qx_qw(x) dz / V*(x)_p/v(x) dx < C for Hardy-type operators on
- . J 2y - monotone functions
7 J J—
l_ 11 are satisfied Hans P. Heinig and Qinsheng Lai
r qg p’ '
(If V*(0) < oo the condition 4.6) must also be taken into account.) Title Page
Proof. Let Q(z) = 29, P(z) = 2,1 < p < ¢ < 00, 0(x) = L, k(z,y) = 1 Contents
in Theorem4.1. SinceP < @ we may take in Theorem.1z; =t > 0,
zj—1 =0, z;4+1 = oo and the result (i) follows. 1) < ¢ < p < 00, p > 1, then A 44
@ is weakly convex and by Theore#nl, (4.7) is satisfied for alb < f7, if and < >
only if for all covering sequences:; }
Go Back

i1 x; / ) “ ose
([ ) ([orrod)]

J J—
q/p
<o (z )
J
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and

Zm </:H v - x)iato(z) dx) < /x jjl V()" v(x) dq;) "
(Z 771’/(1> a/p

where we have taken; = ej_q/ P'in (4.4) and @.5). But since the dual of?/4 Weighted modular inequalities
. 1 1 1 k . i for Hardy-type opergtors on
is ¢r/4, T =g T the previous two estimates are equivalent®@)(and @.9) monotone functions
respectively. n

Hans P. Heinig and Qinsheng Lai

The result of Corollaryt.2 (ii) in the casel < ¢ < p < co was also proved
in[10, Thm. 2.2], but the casé < ¢ < 1 < p seems to be new. Title Page
In the remaining portion of this section we apply the results of the previous
section to show that the Hardy-Littlewood maximal function and the Hilbert
transform are bounded in weighted Orlicz-Lorentz spaces. This, in particular, < >
extends the Lorentz space results of Arifio-Muckenholipapd Sawyer 71]

Contents

) . < >
to this general setting.
If P is an increasing function &* with P(0) = 0, then the Orlicz-Lorentz Go Back
spaceg’\P( ) With Weightv consist of all Lebesgue measuralflen R" such Close
that P~ ([° P Jo(z)dz) < oo. Heref*(t) = inf{s > 0 : |{z : _
|f(z)| > s} S t} denotes the equimeasurable decreasing rearrangement of e
|fl. Page 46 of 51
Recall that if (M f)(x) = sup,eq 17 Jo |/ (y)| dy is the Hardy Littlewood
maximal function, then it is well known (cf2]) that (M f)* ~ 1 fo . 3. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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follows therefore from Corollar@.5with « = —1 that the following proposition
holds:

Proposition 4.3. SupposeP is an N-function, P, P € A, andQ weakly con-
vex. ThenV : A ,(v) — A, (w) is bounded, that i®~" ([~ Q((M f)*)w) <
CP~' ([ P(Cf*)v), if and if there are constant8 > 0, such that

(4.9) o' (ZQ (%) /:“ w) < p1 (Z P(e;) /xj+1 v)

Zj

Weighted modular inequalities
for Hardy-type operators on

is satisfied for all decreasing sequendes} and the covering sequende; } TN (TINEEms
satisfyingfoxj v =2k and Hans P. Heinig and Qinsheng Lai
(4.10)
B Zj+1 1 iX(z-_l ) _ 1 .
1 || AT —T) d < p1 — Title Page
o (2| e, e <o (2
7 J J Contents
is satisfied for all positive sequencgs },<z and all covering sequencds;; }. pp >
Here agair// (z) = [ v andi(z) = z. < >
Another illustration involves the Hilbert transform defined by the principle
value integral Go Back
1 [ f(t
) =prvt [T g Close
TJooo T — 1 Quit
Then (seeil, (1.15)]) the rearrangement inequality Page 47 of 51
Hf)” <C L yc*tdt Oof*(t)dt < Cy(H )
( f) (./L') — 1 E 0 f ( ) + t — 2( f ) ('/L‘) J. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000
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is satisfied. But this implies that the Hilbert transform is bounded ffoptv)
to A, (w) if and only if

o ([T arwiean) < P ([T pcs @l d)

is satisfied, where

(4-11) Tf(l') = xil /0 f(t) dt + / @ dta 0< fl : Weighted modular inequalities

for Hardy-type operators on
. L . o L . monotone functions
However, @.11) will be satisfied if and only if it is satisfied for the averaging

operator and its conjugate defined on decreasing functions. Hence Corollaries
3.5and3.6apply witha = —1 and we have:

Hans P. Heinig and Qinsheng Lai

Proposition 4.4. Suppose” and ) are N-functions andP, P e A,. ThenH : UL TS
Ap(v) = Ag(w) is bounded if and only if4.9) (with {e;} |, {z;} satisfying Contents
o7 v =2%),(4.10 and (see .19, (3.19) « b

1n('/yj)x(ijyj+1)
EjV

) Yj [ 1 . 1 < >
- — de | < P~ —
¢ Z /y‘1 @ B Ple;v) wie)de | < Z i)’ Go Back
g i L i j
- Yi -ln(y~/x) X(y9541) B 1 Close
1 j Y5 Uit 1
o (S e[ rem]  Juwrar) < (£,
J j—1 L 5V

P J

o N _ Page 48 of 51
are satisfied for all positive sequendgs} <z and all covering sequencgs; }.
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