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Abstract

The following inequalities for power-exponential functions are proved
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wherel0<z<y<lorl<z<y.
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It is well-known that, if0 < 2 < y < ¢, then

(1.2) x¥ < y*.

If e < z <y, then inequality {.1) is reversed. If) < = < e, then

1.2) (e4+ )" > (e —x)"™",
Inequalities for
For details about these inequalities, please refef tp.[82] and E, p. 365]. PEE ST FUTETS
In [3, p. 365 and p. 768], an open problem was proposed: How do we com-  Feng Qi and Lokenath Debnath
pare the value ofi> with that of b for 1 < a < e < b? Although it looks
like a simple problem, not much progress has been made on it. Recently, some

discussion was given inL[ p. 82] by Professor P.S. Bullen. Moreover, more Title Page
detailed discussion on this open problem was giver'jroyy Mr. Z. Luo and Contents
J.-J. Wen. «“ S

There is a rich literature on inequalities for power-exponential functions, see ) R
[1, 2, 3].

In this paper, based on the revised Cauchy’s mean-value theorem in integral Go Back
form [7, 8], we will give some new inequalities for power-exponential functions, ——
and propose an open problem.
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Theorem 2.1 (Main Theorem).For0 <z <y < 1lorl <z <y, we have

xY

Yy vy _y

2.1 s 2
y\Nw oy

2.2 e .
(2.2) () >4

For 0 < x < 1 < y, the right hand side ofA.1) and (2.2) are reversed.
fOo<z<l<yorO<z<y<e,then

1 T_ ] oy
2.3) ylnz y Y

< =
rlny 2v—1 av
If e < z <y, inequality @.3) is reversed.

First Proof of Theoren?.1. We first prove the right hand side of inequali/1)

(2.4) y. v

x v’

where) < x <y < 1orl <z < y. This inequality is equivalent to
Iny—Inz>zlny —ylnz,

which can be written as

(2.5) vz
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Slnce (“Tt) = h” , an integral form of inequalityZ 4) follows from (2.5),

thati |s

Y1 Int 1 V1
(2.6) / Sldt < — St
: t Ty

The reciprocal change of variables ih) gives

1/x 1 1/z 1
(2'7) / <1 +1In t) dt < — ~dt. Inequalities for
1y Y iy Power-Exponential Functions
Substitutingu = 1 andv = é in (2.7) yields the following result Feng Qi and Lokenath Debnath
(2.8) / (14+Int)dt < uv/ i dt. Title Page
! ! Contents
In order to proveZ.4), it is sufficient to showZ.6) for 1 < z < y, and .9) <« R
for 1 < v < wu. Introduce the following
< >
Y1 — lnt
(2.9) flz,y) = / - —/ t, y>x>1; Go Back
w Close
(2.10) h(u,v):/ (1—|—lnt)dt—uv/ —dt, u>v>1
v v QUit
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After some straightforward calculations, we obtain the following results

Ofw.y) _ (/xyidt—l—x(l—lny)—l)ng@’y),

dy ry? ry?
dg(z,y) 1-=x

g(1,1) =0,
U]
—:1+lnu—v—v/ ;dt,

h(u,v)  1—w
S E— <0.

Slncedg(x ) <0, theng(z, ) decreases, thugz, =) < g(1,1) = 0. From

agg;y) < 0, we have thay(z,y) decreases iy, sog(z,y) < g(z,x) < 0.

Then?/i24) < 0, f(x,y) decreases ip, thereforef (v, y) < f(x,x) = 0. This
completes the proof of inequalitg ©) for 1 < = < v.

SinceZ/(u.w) ru) <0, then?%) decreases in, hence
h h
0 (u,v)<8 (u,v) =1—v+Inv <0,
ou ou

uU=v
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soh(u,v) decreases in, thenh(u,v) < h(v,v) = 0. This completes the proof
of (2.8 foru > v > 1.
Next, we prove the left hand side of inequaliB/ 1)

xY

y

(2.11) o2

Y T

wherel <z <y < lorl <z <y. We canrewrite{.11) in the form
(2.12) 2Iny—y*Inx >Iny —Inz.
This is equivalent to

¥y —1 Inz

(2.13)

y—1" Iny

Sincez?—1 = (Inx) [ 2" dt, y"—1 = (Iny) [, ' dt, theninequality?.13
can be rewritten in the integral form

(2.14) foixt oy
Jo ytdt
Making the change of variables= ys, gives
Y 1
. zdt =y T S,
(2.15) td “)°d
0 0

(2.16) /: Yt dt = m/ol(yx)sds.
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Therefore, the equivalent form a?.(L4) is

1 X \S
(2.17) M <<
Jo (av)sds @

Hence, it is sufficient to show that inequality.{7) is valid for0 < x <y < 1

orl<z<uy.
From the revised Cauchy’s mean value theoren in integral form, i@ we
get
1 0
XT\S d X
(2.18) M - (y—> . 0e(0,1).
o (av)* ds xy

Using inequality 2.4) leads to

6
y* AN
(%) <)<
Thus the inequality4.17) is proved and the proof o2(11) is complete.

It follows from (2.4) and @.11) that the inequalityZ.1) holds.
It is clear that inequality4.2) is equivalent to

y _(y—1Dhz

It is evident that

(y—1)Inz Ia¥! InaY—-Inz folysds o (y>9 Y
(z—1Dlny Iny=! Iny®—Iny folxsds a
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This leads to the inequality2(2).
Finally, inequality @.3) can easily be derived froni (1) and €.18. Making

similar arguments as above enables us to establish the reversed inequadlities.

Second Proof of Inequalitieg€ ) and 2.4). It is easy to see that

t>1+1Int, t>0,t#1.

tmt'_t—l—mt>0
t—1)  (t—1)2 ’

and the functiorftl_if Is increasing. This gives

Therefore

In zlnzx
ymy >

, l<z<yor0<z<y<l.
y—1 x—1

This can be written as
zy(lny —Inz) > ylny — rlnz.

Thus, the desired inequality @) follows.
Sincet < 1+ Intfort # 1 andt > 0, we have

Int ’_t—1—tlnt<0
t—1)  tt—1)2 ’
that is, the functio2t is decreasing, thus

Iny Inx

y—1 -1
Iny—lnx>zlny —ylnzx
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hold for0 < z <y < 1orl < x < y. This yields inequality Z.4). O

Remark2.1 It has been pointed out by Professor P.S. Bullen that inequality
(2.4), the right hand side of inequality? (1), is equivalent to inequality2(2),
this can be seen only if we replacey by i, % respectively.
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Adopting the following notations:

(31) fl(m7y) = Z,
(3.2) fesi(z,y) = a0,
T _ fk(yax)

for0<zr<y<lorl<z<y,andk > 1.
The following inequalities need to be proved or disproved

(3.4) Fop1(z,y) > Fop(z,y),
(3.5) Forra(2,y) > Foppa (2, ).
That is,

(3.6) Fy(z,y) < Fi(z,y) < Fy(z,y) < F3(z,y) < Fg(z,y) < ---
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