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ABSTRACT. Based on a “monotonicity” analogue of the l’Hospital Rule, monotonicity proper-
ties of the relative error are established for a Padé approximation of Mills’ ratio.
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1. I NTRODUCTION , STATEMENT OF RESULTS, AND DISCUSSION

Let

ϕ(t) :=
1√
2π

e−t2/2 and Φ(t) :=

∫ ∞

t

ϕ(u) du =
1

2
erfc

(
t√
2

)
denote, as usual, the density and tail function of the standard normal law;erfc denotes the
complementary error function. The ratio

r(t) :=
Φ(t)

ϕ(t)

is known as Mills’ ratio; see, e.g., [6, Sect. 2.26]; its reciprocal,
ϕ(t)

Φ(t)
, is the so-called failure

rate for the standard normal law.
The most well-known results on Mills’ ratio include the inequality

(1.1) r(t) <
1

t
∀t > 0
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2 IOSIF PINELIS

and the asymptotic relation

(1.2) r(t) ∼ 1

t
as t →∞;

as usual,a ∼ b means
a

b
→ 1; cf., e.g., inequalities [6, Sect. 2.26, Eq. (1)] due to Gordon [3]

and the special case withp = 2 of inequalities [6, Section 2.26, Eq. (7)] due to Gautschi [2].
There are many different kinds of inequalities, as well as asymptotic and numerical results,

for Mills’ ratio in the literature. See e.g. [7, Chapter 3] and references therein; in particular, a
wealth of such information is given in Shenton [12].

In this paper, we shall consider monotonicity properties of the relative error

(1.3) δk(t) :=
r(t)− rk(t)

r(t)

for a sequence(rk(t)) of certain rational approximations of Mills’ ratior(t); as far as we know,
such properties have not yet been considered. Such monotonicity properties may be used in an
obvious manner: if it is known that|δk(t)| is monotonically decreasing int > 0 and|δk(t0)| < δ
for somet0 > 0 andδ > 0, then|δk(t)| < δ for all t ∈ [t0,∞) – cf. Remark 1.6 below; also,
if it is known that, say,t2k|δk(t)| is monotonically increasing int ∈ (0,∞) from 0 to k!, then

|δk(t)| <
k!

t2k
for all t ∈ (0,∞) – cf. part (ii) of Theorem 1.5.

Our main results here are based on the following “monotonicity” analogue of the l’Hospital
Rule, stated and proved in [8].

Theorem 1.1. Let f andg be differentiable functions on an interval(a, b) such thatf(a+) =

g(a+) = 0 or f(b−) = g(b−) = 0, g′ is nonzero and does not change sign, and
f ′

g′
is increasing

(decreasing) on(a, b). Then
f

g
is increasing (respectively, decreasing) on(a, b). (Note that the

conditions here imply thatg is nonzero and does not change sign on(a, b).)

Further developments of Theorem 1.1 and other applications were given: in [8], applications
to certain information inequalities; in [9], extensions to non-monotonic ratios of functions,
with applications to certain probability inequalities arising in bioequivalence studies and to
problems of convexity; in [10], applications to probability inequalities for sums of bounded
random variables.

To begin the discussion here, let us illustrate possible applications of Theorem 1.1 with the
following simple refinement of (1.1) and (1.2):

Proposition 1.2. The ratio
r(t)

1/t
is increasing int ∈ (0,∞) from 0 to 1, and so, the relative

absolute error
1/t− r(t)

r(t)
is decreasing int ∈ (0,∞) from∞ to 0.

This proposition is immediate from Theorem 1.1 and the usual l’Hospital rule for limits,

because fort > 0 one has
r(t)

1/t
=

Φ(t)

ϕ(t)/t
and

Φ(t)′

(ϕ(t)/t)′
=

1

1 + 1/t2
,

which is increasing int ∈ (0,∞) from 0 to 1.
It is not hard to obtain the following generalization of (1.1) and (1.2).
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Proposition 1.3. For all k ∈ {0, 1, . . .} and all t > 0,

(1.4) r(t) =
1

t
− 1

t3
+

1 · 3
t5

− 1 · 3 · 5
t7

+ · · ·+ (−1)k (2k − 1)!!

t2k+1
+ Rk(t),

where

Rk(t) := (−1)k+1 (2k + 1)!!

ϕ(t)

∫ ∞

t

ϕ(u)

u2k+2
du, so that

(1.5) |Rk(t)| = (−1)k+1Rk(t) <
(2k + 1)!!

t2k+2
r(t) <

(2k + 1)!!

t2k+3
.

As usual,

(2k − 1)!! := 1 · 3 · 5 · · · · · (2k − 1) and (2k)!! := 2 · 4 · 6 · · · · · 2k
for all k ∈ {1, 2, . . .}. Also, (−1)!! := 1 and0!! := 1.

Inequality|Rk(t)| <
(2k + 1)!!

t2k+3
for all t > 0, which follows from (1.5), is well known; see

e.g. [12, page 180].
Identity (1.4) is immediate from the recurrence relation∫ ∞

t

ϕ(u)

um
du =

ϕ(t)

tm+1
− (m + 1)

∫ ∞

t

ϕ(u)

um+2
du ∀t > 0 ∀m ∈ {0, 1, . . .},

which in turn is obtained by integration by parts. Inequalities (1.5) follow from the Chebyshev

type inequality
∫ ∞

t

ϕ(u)

u2k+2
du <

1

t2k+2

∫ ∞

t

ϕ(u) du and inequality (1.1), respectively.

Proposition 1.2 can be generalized and strengthened as follows.

Proposition 1.4. For everyk ∈ {0, 1, . . .}

(i) the relative absolute error∆k(t) :=
|Rk(t)|
r(t)

is decreasing int ∈ (0,∞) from∞ to 0;

(ii) on the other hand, the ratio
∆k(t)

t−(2k+2)
= t2k+2 |Rk(t)|

r(t)
is increasing int ∈ (0,∞) from0

to (2k + 1)!!.

In particular, Proposition 1.2 is a special case (withk = 0) of part (i) of Proposition 1.4.
On the other hand, part (ii) of Proposition 1.4 may be considered as a refinement of the first
inequality in (1.5).

The proof of Proposition 1.4 is given below in Section 3.
As the first inequality in (1.5) shows, relation (1.4) provides an asymptotic estimate of

r(t), which has a relative errorO(1/t2k+2), which is small ast → ∞. However, because∫∞
t

ϕ(u)
u2k+2 du >

∫ t+1

t
ϕ(u)

u2k+2 du > ϕ(t+1)
(t+1)2k+2 ∀t > 0, the remainder|Rk(t)| rapidly tends to∞ as

k →∞, for each fixedt > 0. This is a serious disadvantage of the asymptotic expansion given
by (1.4). The disadvantage disappears if one uses, instead of (1.4), the corresponding rational
Padé approximation, as follows.

For allk ∈ {1, 2, . . .} andt > 0, consider the ratio

(1.6) rk(t) :=
1

t +
1

t +
2

t +
3

...
t +

k − 1

t

,
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which is thekth initial segment of the Laplace [5] continuous fraction for Mills’ ratior(t). Let
alsor0(t) := 0 for all t > 0.

Take anyp ∈ {0, 1, . . .}. Then, fork = 2p, the expressiontrk(t) is the [(p− 1) /p] Padé
approximant [1] (or, rather, a Padé-Laurent one) of the (divergent) asymptotic expansion (cf.
(1.4))

tr(t) ' 1− 1

t2
+

1 · 3
t4

− 1 · 3 · 5
t6

+ · · · = 1− s + 1 · 3 · s2 − 1 · 3 · 5 · s3 + · · ·

in the powers ofs :=
1

t2
ast → ∞; for k = 2p + 1, the expressiontrk(t) is the [p/p] Padé

approximant of the above asymptotic expansion in the powers ofs. Indeed, it is easy to see that

trk(t) may be rewritten as the ratio of two polynomials ins =
1

t2
of degreesp− 1 andp when

k = 2p and of degreesp andp whenk = 2p + 1; moreover, it follows from (1.9) below, (1.3),
and (1.2) that

(1.7) |tr(t)− trk(t)| = O

(
1

t2k

)
= O

(
sk

)
ast → ∞ or, equivalently,s → 0. (Alternatively, see Section 4.6 in [1], especially formula
(6.9) therein.)

Moreover, this Padé approximation is wrapping in the sense that for allm ∈ {1, 2, . . .} and
all t > 0

(1.8) r2m−2(t) < r2m(t) < r(t) < r2m+1(t) < r2m−1(t);

this follows from general properties of continuous fractions; cf., e.g., [12, Eq. (19)].
This Padé approximation is convergent: for everyt > 0,

rk(t) −→ r(t) as k →∞;

this follows, e.g., from the more general results in [1]; see, in particular, the partial proof of
(6.15) therein. On the rate of this convergence, see e.g. [12, page 181].

Other rational approximations and inequalities comparing such approximations with Mills’
ratio are known as well; see e.g. [12, page 188, inequalities (i)–(vi)] and [4, Eq. (3.7)]; these
results may also be found in [7, Subsections 3.7.6(b) and 3.6.3, respectively]. However, because
of the uniqueness of Padé approximants, the important property (1.7) is not shared by any
rational approximations of Mills’ ratio other than the Padé ones.

In what follows, let the relative errorδk(t) be still defined by (1.3), whererk(t) is specifically
defined by (1.6).

The following theorem, which is the main result of this paper, may be compared with Propo-
sition 1.4.

Theorem 1.5.
(i) For all k ∈ {0, 1, . . .} and all t > 0,

(−1)kδk(t) > 0.

(ii) For all k ∈ {1, 2, . . .}, the ratio
|δk(t)|
t−2k

= t2k |δk(t)| is increasing int ∈ (0,∞) from 0

to k!. In particular, for all t > 0,

(1.9) |δk(t)| <
k!

t2k
.

(iii) For all k ∈ {1, 2, . . .}, the absolute relative error|δk(t)| is decreasing int ∈ (0,∞)
from∞ to 0 if k is odd, and from1 to 0 if k is even.
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The proof of Theorem 1.5 is given below in Section 3.

Remark 1.6. Part (iii) of Theorem 1.5 is useful in the following way. Suppose that the absolute
relative error|δk(t0)| is no greater than some positive numberδ, for somet0 > 0; then|δk(t)| <
δ for all t > t0. For example, it is easy to see (for instance, using (1.8)) that|δ8(4)| < 0.5 ×
10−6; it follows then from part (iii) of Theorem 1.5 that the absolute relative error|δ8(t)| of the
approximation

r(t) ≈ r8(t) =
t(t6 + 27t4 + 185t2 + 279)

t8 + 28t6 + 210t4 + 420t2 + 105

is less than0.5× 10−6 for all t > 4.

2. AUXILIARY RESULTS

For all realt, define polynomial expressionsgk(t) and fk(t) recursively by the following
formulas: for allk ∈ {2, 3, . . .}

gk(t) = tgk−1(t) + (k − 1)gk−2(t) and fk(t) = tfk−1(t) + (k − 1)fk−2(t);

g0(t) = 1; f0(t) = 0; g1(t) = t; f1(t) = 1.

Then for allt > 0 andk ∈ {0, 1, . . .}

(2.1) rk(t) =
fk(t)

gk(t)
;

see, e.g., [12, Eq. (17)]. Also, for allk ∈ {1, 2, . . .},

(2.2) fkgk−1 − gkfk−1 = (−1)k−1(k − 1)! ;

see, e.g., [12, Eq. (18)]. Further, let

(2.3) γk(t) :=

∫ ∞

t

(t− u)k ϕ(u) du.

Then it is obvious that for allk ∈ {0, 1, . . .}

(2.4) (−1)kγk > 0;

also, one can show that

(2.5) γk = gkΦ− fkϕ;

see, e.g., [12, Eq. (21)]. In addition, it is immediate from (2.3) that for allk ∈ {1, 2, . . .}
(2.6) γ′k = kγk−1.

Here and in what follows,f ′ denotes the derivative off .

Remark 2.1.
• One has

g2(t) = t2 + 1, g3(t) = t3 + 3t, g4(t) = t4 + 6t2 + 3,
f2(t) = t, f3(t) = t2 + 2, f4(t) = t3 + 5t.

• By induction, for allk ∈ {0, 1, . . .},
– all the coefficients offk andgk are nonnegative integers;
– deg(gk) = k anddeg(fk) = k − 1 (the degree of the zero polynomial is defined to

be−1); the leading coefficients of allfk andgk equal1, except forf0;
– polynomialgk is even ifk is even and odd ifk is odd, whilefk is odd if k is even

and even ifk is odd;
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– moreover, iffk or gk is even, then all the coefficients of its even powers, up through
the leading one, are strictly positive; iffk or gk is odd, then all the coefficients of
its odd powers, up through the leading one, are strictly positive.

Lemma 2.2. For all k ∈ {1, 2, . . .} and all realt,

g′k(t) = kgk−1(t) and f ′k(t) = tfk(t) + kfk−1(t)− gk(t).

Proof. From the definition ofgk(t), it is easy to see that the identityg′k(t) = kgk−1(t) is true for
k ∈ {1, 2}; also, fork ≥ 3 one has by induction

g′k(t) = (tgk−1(t) + (k − 1)gk−2(t))
′

= gk−1(t) + tg′k−1(t) + (k − 1)g′k−2(t)

= gk−1(t) + t(k − 1)gk−2(t) + (k − 1)(k − 2)gk−3(t)

= gk−1(t) + (k − 1)gk−1(t) = kgk−1(t).

The proof of the identityf ′k(t) = tfk(t) + kfk−1(t)− gk(t) is similar. �

3. PROOFS OF M AIN RESULTS

Proof of Proposition 1.4.

(i) One has fort > 0

(3.1)
(ϕ(t)|Rk(t)|)′

Φ(t)′
=

(2k + 1)!!

t2k+2
,

which is decreasing int ∈ (0,∞). Also, obviouslyϕ(t)|Rk(t)| → 0 andΦ(t) → 0 as
t → ∞. In addition,∆k(t) → ∞ ast ↓ 0. Hence, by Theorem 1.1, relation (3.1), and

the usual l’Hospital Rule for limits,∆k(t) =
ϕ(t)|Rk(t)|

Φ(t)
is decreasing int ∈ (0,∞)

from∞ to 0. Thus, part (i) of the proposition is proved.
(ii) One has fort > 0

(3.2)
1

(2k + 1)!!

(ϕ(t)|Rk(t)|)′(
t−(2k+2) Φ(t)

)′ =

[
1 + (2k + 2)

Φ(t)

tϕ(t)

]−1

.

Using Theorem 1.1 and the usual l’Hospital Rule for limits, it is easy to see that
Φ(t)

ϕ(t)

is decreasing int ∈ (0,∞), from
Φ(0)

ϕ(0)
to 0. Hence,

Φ(t)

tϕ(t)
is decreasing int ∈ (0,∞),

from ∞ to 0, and so, by (3.2),
(ϕ(t)|Rk(t)|)′(
t−(2k+2) Φ(t)

)′ is increasing int ∈ (0,∞) from 0 to

(2k + 1)!!. Therefore, again by Theorem 1.1 and the usual l’Hospital Rule,
∆k(t)

t−(2k+2)
=

ϕ(t)|Rk(t)|
t−(2k+2) Φ(t)

is increasing int ∈ (0,∞) from 0 to (2k + 1)!!.

�

Proof of Theorem 1.5.
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(i) In view of (1.3) and (2.5),

(3.3) δk =
γk

gkΦ
.

This, (2.4), and Remark 2.1 yield part (i) of the theorem.
(ii) It follows from Remark 2.1 that for allt > 0,

gk(t)

tk
= 1 +

ck−1

t
+ · · ·+ c0

tk
,

wherec0, . . . , ck−1 are nonnegative constants. Hence,
gk(t)

tk
is non-increasing int ∈

(0,∞) and
gk(t)

tk
≥ 1 for all t > 0. Therefore, the ratio

t2k |δk(t)|
tkgk(t) |δk(t)|

=
tk

gk(t)
is

non-decreasing int ∈ (0,∞). It is also obvious that
tk

gk(t)
→ 1 ast → ∞. Thus, to

complete the proof of part (ii) of the theorem, it remains to show thattkgk(t) |δk(t)| is
increasing int ∈ (0,∞) from 0 to k!. It follows from (3.3) that

tkgk(t) |δk(t)| =
k∏

j=1

t |γj(t)|
|γj−1(t)|

for all k ∈ {1, 2, . . .} and allt > 0. Hence, to complete the proof of part (ii), it suffices

to show that, for eachj ∈ {1, 2, . . .}, the ratio
t |γj(t)|
|γj−1(t)|

is increasing int ∈ (0,∞) from

0 to j or, equivalently, that the ratio
|γj−1(t)| /t
|γj(t)|

is decreasing int ∈ (0,∞) from∞ to

1

j
. But the latter claim follows by induction inj using the identity

(3.4)
(|γj−1(t)| /t)′

|γj(t)|′
=

1

jt2
+

j − 1

j

|γj−2(t)| /t
|γj−1(t)|

∀j ∈ {2, 3, . . .} ∀t > 0,

Theorem 1.1, and the usual l’Hospital Rule for limits; in turn, identity (3.4) follows
from (2.4) and (2.6). The basis of the induction is provided here by the identity

(|γ0(t)| /t)′

|γ1(t)|′
=

1

t2
+

ϕ(t)/t

Φ(t)
∀t > 0

and Proposition 1.2.
(iii) Using part (i) of the theorem and recalling (1.3) and (2.1), one has

(3.5) |δk|+ (−1)k+1 = (−1)k δk + (−1)k+1 =

(−1)k fkϕ

gk

−Φ
.

Next, using Lemma 2.2 and identity (2.2), one obtains(
(−1)k fkϕ

gk

)′
(
−Φ

)′ =
k!

g2
k

+ (−1)k+1 .

The latter expression is decreasing to(−1)k+1 in t ∈ (0,∞), in view of Remark 2.1.
Now identity (3.5), Theorem 1.1, and the l’Hospital Rule for limits imply that|δk(t)| is
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decreasing to0 in t ∈ (0,∞). It remains to notice that, in view of (3.3), one has the
following:
• |δk(0+)| = ∞ if k is odd, because thengk(0) = 0;

• |δk(0)| =
γk(0)

gk(0)Φ(0)
= 1 if k is even; the first equality here follows from (3.3) and

(2.4); the second equality follows from (2.5) (becausefk is odd for evenk, and so,
fk(0) = 0).

�
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