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ABSTRACT. Based on a “monotonicity” analogue of the I'Hospital Rule, monotonicity proper-
ties of the relative error are established for a Padé approximation of Mills’ ratio.
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1. INTRODUCTION, STATEMENT OF RESULTS, AND DISCUSSION

Let

o(t) = \/% e /2 and B(t) = /too p(u) du = %effe (%)

denote, as usual, the density and tail function of the standard normakté&wgenotes the
complementary error function. The ratio

is known as Mills’ ratio; see, e.gl,[6, Sect. 2.26]; its rempro%l%, is the so-called failure
rate for the standard normal law.
The most well-known results on Mills’ ratio include the inequality

(1.2) r(t) < % Vit >0
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2 lOSIF PINELIS

and the asymptotic relation
1
(1.2) r(t) ~ 7 as t — o0;

as usualg ~ b means. — 1; cf., e.g., inequalities [6, Sect. 2.26, Eq. (1)] due to Gordon [3]

and the special case with= 2 of inequalities([6, Section 2.26, Eq. (7)] due to Gautschi [2].
There are many different kinds of inequalities, as well as asymptotic and numerical results,
for Mills’ ratio in the literature. See e.gl][7, Chapter 3] and references therein; in particular, a
wealth of such information is given in Shenton|[12].
In this paper, we shall consider monotonicity properties of the relative error

_ () = r(t)
(1.3) Op(t) := D)
for a sequencér,(t)) of certain rational approximations of Mills’ ratig(t); as far as we know,
such properties have not yet been considered. Such monotonicity properties may be used in an
obvious manner: if itis known thad, (¢)| is monotonically decreasing in> 0 and|d,(t)| < ¢
for somet, > 0 andd > 0, then|d,(¢)| < ¢ for all ¢ € [ty, 00) — cf. Remark 16 below; also,
if it is known that, say#?*|6,(¢)| is monotonically increasing in € (0, 0o) from 0 to £!, then

u
|0 (t)] < tk;—k forall t € (0, 00) — cf. part (ii) of Theore 5.

Our main results here are based on the following "monotonicity” analogue of the I'Hospital
Rule, stated and proved inl [8].

Theorem 1.1.Let f and g be differentiable functions on an interval, b) such thatf(a+) =
gla+)=0o0r f(b—) = g(b—) = 0, ¢’ is nonzero and does not change sign, afnats increasing

f

(decreasing) orfa, b). Then= is increasing (respectively, decreasmg)(@nb). (Note that the

conditions here imply that is nonzero and does not change sign(ar).)

Further developments of Theorém|1.1 and other applications were given: in [8], applications
to certain information inequalities; in ][9], extensions to non-monotonic ratios of functions,
with applications to certain probability inequalities arising in bioequivalence studies and to
problems of convexity; in [10], applications to probability inequalities for sums of bounded
random variables.

To begin the discussion here, let us illustrate possible applications of Thgorem 1.1 with the
following simple refinement of (1}1) and (1.2):

r(t)

Proposition 1.2. The ratiol—t is increasing int € (0,00) from 0 to 1, and so, the relative

1/t —r(t)

absolute error
r(t)

This proposition is immediate from Theorém 1.1 and the usual I'Hospital rule for limits,
because fot > 0 one has@ = ﬂ and
1/t o)/t
o)y 1
(p)/t)  1+1/t
which is increasing it € (0, 00) from0 to 1.
It is not hard to obtain the following generalization pf (1.1) gnd](1.2).

is decreasing irt € (0, co) from oo to 0.
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Proposition 1.3. For all £ € {0,1,...} and allt > 0,

1 1 1-3 1-3-5 (2k — 1)
where ( i W
2k + DI [ p(u
o k+1
Rilt) = (-1 / ey du,so that
(2k + )N (2k + )N
(1.5) [Ri(t)] = (=1)"'Ry(t) < e T < g
As usual,
(2k—1):=1-3-5---- - (2k—1) and (2k)!1:=2-4-6- --- -2k
forall k € {1,2,...}. Also, (—1)!! := 1 and0!! := 1.
(2k + )N

Inequality | Ry (t)| <

e.g. [12, page 180].
Identity (1.4) is immediate from the recurrence relation

[ e = 2 ) [T S s 0vme 0.1,

um - tm-i—l um+2

373 — for all t > 0, which follows from [1.5), is well known; see

which in turn is obtained by integration by parts. Inequalities|(1.5) follow from the Chebyshev

: N RaI(7y
type mequahty/ N du < el
Propositiorrj]z can be generalized and strengthened as follows.

Proposition 1.4. For everyk € {0,1,...}

¢(u) du and inequality[(1]1), respectively.

| B (1)

r(t)
(i) onthe other hand, the ratie—tA(sk(?z) = t2k+2—“j’zi§)‘
to (2k + 1)!.

In particular, Propositiof 1|2 is a special case (with= 0) of part (i) of Propositior 1}4.
On the other hand, part (ii) of Propositipn 1.4 may be considered as a refinement of the first
inequality in [1.5).

The proof of Propositiop 14 is given below in Sectign 3.

As the first inequality in[(1]5) shows, relatiopn (1.4) provides an asymptotic estimate of
r(t), which has a relative erraD(1/t***2), which is small ag¢ — oo. However, because

too u‘iﬁ“& du > ff“ uﬁ% du > (;j(lt)—tilg vVt > 0, the remaindefRy(t)| rapidly tends tox as

k — oo, for each fixed > 0. This is a serious disadvantage of the asymptotic expansion given
by (1.4). The disadvantage disappears if one uses, instepd Jof (1.4), the corresponding rational
Padé approximation, as follows.

Forallk € {1,2,...} andt > 0, consider the ratio

(1.6) () = L |
t+ 5

3

(i) the relative absolute errof,(t) := is decreasing int € (0, co) from oo to 0;

is increasing int € (0, 00) from0

t+
t+
k—1

t+——
t
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which is thekth initial segment of the Laplace![5] continuous fraction for Mills’ rati@). Let
alsory(t) := 0 forallt > 0.

Take anyp € {0,1,...}. Then, fork = 2p, the expressionr.(t) is the[(p — 1) /p] Padé
approximant([L] (or, rather, a Padé-Laurent one) of the (divergent) asymptotic expansion (cf.

(.4))
1 1.3 1-3-5
tr(t):l—t—2+ e +oo=1—-5+1-3-62-1-3-5-534...

. 1 . . .
in the powers ofs := 7 ast — oo; for k = 2p + 1, the expressiomr,(t) is the [p/p] Padé
approximant of the above asymptotic expansion in the powesslafieed, it is easy to see that

. . |
try(t) may be rewritten as the ratio of two polynomialssia- 2 of degrees — 1 andp when
k = 2p and of degreep andp whenk = 2p + 1; moreover, it follows from[(1]9) below| (7].3),
and [1.2) that
1

(1.7) |tr(t) — try(t)] = O (ﬁ) =0 (s")

ast — oo or, equivalently,s — 0. (Alternatively, see Section 4.6 in![1], especially formula
(6.9) therein.)

Moreover, this Padé approximation is wrapping in the sense that for al{1,2,...} and
allt >0

(18) TQm_Q(t) < Tgm(t) < T(t) < T’gm+1(t) < Tgm_l(t);

this follows from general properties of continuous fractions; cf., e.gl, [12, Eqg. (19)].
This Padé approximation is convergent: for every 0,

ri(t) — r(t) as k — oo;

this follows, e.g., from the more general resultslin [1]; see, in particular, the partial proof of
(6.15) therein. On the rate of this convergence, seele.g. [12, page 181].

Other rational approximations and inequalities comparing such approximations with Mills’
ratio are known as well; see e.g. [12, page 188, inequalities (i)—(vi)][dnd [4, Eq. (3.7)]; these
results may also be found in/[7, Subsections 3.7.6(b) and 3.6.3, respectively]. However, because
of the uniqueness of Padé approximants, the important properiy (1.7) is not shared by any
rational approximations of Mills’ ratio other than the Padé ones.

In what follows, let the relative errax, (¢) be still defined by[(1]3), whene.(¢) is specifically
defined by|(1.).

The following theorem, which is the main result of this paper, may be compared with Propo-
sition[1.4.

Theorem 1.5.

(i) Forall k € {0,1,...} and allt > 0,
(=1)*0,(t) > 0.

N | Ok(t . o
(i) Forall k € {1,2,...}, the rauo'f_% = t% |6, (t)] is increasing int € (0, o) from 0
to £!. In particular, for all ¢ > 0,
k!

t2k ’

(i) Forall k € {1,2,...}, the absolute relative errofd,(¢)| is decreasing irt € (0, o)
fromoo to 0 if £ is odd, and froni to 0 if £ is even.
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The proof of Theorerp 115 is given below in Sectign 3.

Remark 1.6. Part (i) of Theoreni 15 is useful in the following way. Suppose that the absolute
relative errofdx(to)| is no greater than some positive numbgior somet, > 0; then|d,(¢)| <
¢ for all t > ¢,. For example, it is easy to see (for instance, using (1.8))|8hét)| < 0.5 x
10~%; it follows then from part (iii) of Theorerh 1|5 that the absolute relative ejégt)| of the
approximation

t(t% + 27t* + 185t + 279)
84 2816 + 210¢4 + 420¢2 + 105

r(t) ~ rs(t)
is less thar).5 x 1076 for all ¢ > 4.

2. AUXILIARY RESULTS

For all realt, define polynomial expressiong(t) and fi(¢) recursively by the following
formulas: for allk € {2,3,...}

ge(t) = tgr—1(t) + (b — D)gr—o(t) and fi(t) = tfr1(t) + (k — 1) fr_a(t);
g(t) =1 folt) =0; aq(t)=t fi(t)=1.
Then for allt > 0 andk € {0,1,...}

(21) Tk (t) = 3

see, e.g./[12, Eq. (17)]. Also, for dlle {1,2,...},

(2.2) fegr1 = gefoor = (=1 Mk = 1)1,
see, e.g.,[12, Eqg. (18)]. Further, let

(2.3) w®)i= [ (6= 0 olu) du
t

Then it is obvious that for alt € {0, 1, ...}

(2.4) (=1)%y > 0;

also, one can show that

(2.5) Y = g® — frg;
see, e.g./[12, Eq. (21)]. In addition, it is immediate from|(2.3) that fok al{1,2, ...}

(2.6) e = k-1
Here and in what followsf’ denotes the derivative gf.
Remark 2.1.
e One has
@) =12 +1, gs(t) =13 +3t, gu(t) =t*+6t> + 3,
fo(t) =t, f3(t) =t +2,  fu(t) =13+ 5t.
e By induction, for allk € {0,1,...},
— all the coefficients off, andg, are nonnegative integers;
— deg(gr) = k anddeg(fr) = k — 1 (the degree of the zero polynomial is defined to
be —1); the leading coefficients of all, andg, equall, except forfy;

— polynomialgy is even ifk is even and odd ik is odd, whilef;, is odd if £ is even
and even ift is odd;
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— moreover, iff;. or g, is even, then all the coefficients of its even powers, up through
the leading one, are strictly positive; fif or g, is odd, then all the coefficients of
its odd powers, up through the leading one, are strictly positive.

Lemma2.2. Forall k£ € {1,2,...} and all realt,
9i(t) = kge1(t) and  fi(t) = tfi(t) + Kfia () — ge(t)-

Proof. From the definition ofy.(¢), it is easy to see that the identigy(t) = kgx_1(¢) is true for
k € {1,2}; also, fork > 3 one has by induction

9e(t) = (tge-1(t) + (k — 1)gr—2(t))
= gr-1(t) +tgp_1 () + (b — 1)gip_o(t)
= gr-1(t) + t(k — D)gr—2(t) + (k — 1)(k — 2)ge—3(1)
= gr—1(t) + (k — ) gr—1(t) = kgr-1(t).
The proof of the identityf, (t) = t fx(t) + kfr—1(t) — gx(t) is similar. O

3. PROOFS OF MAIN RESULTS
Proof of Proposition T}4.

(i) One has for > 0

(3.1) (@(t%RkEt)D/ _ (21;:)!!’
(t) t

which is decreasing in € (0, 00). Also, obviouslyy(t)|R(t)| — 0 and®(t) — 0 as

t — oo. In addition,A,(t) — oo ast | 0. Hence, by Theorein 1.1, relatidn (3.1), and

p(t)| R (t)]
D(t)
from oo to 0. Thus, part (i) of the proposition is proved.

(i) One hasfort > 0

1 (pR@)]) o(t)
(3.2) (2k + 1)!! (t-(2k+2) 6(75))' B {1 Tk Q)W

the usual I'Hospital Rule for limitsA,(t) = is decreasing it € (0, 0)

-1

. , o D
Using Theorel and the usual I'Hospital Rule for limits, it is easy to see—L%t
. . ¥
©(0) o(t)

to 0. Hence,——= is decreasing i € (0, co),

o(0) 100 Hences ) gme 000

from oo to 0, and so, by|(3/2); (so(t)|Rk£t)|) - is increasing int € (0,00) from 0 to
(t7(2k+2) @(t))

(2k + 1)!1. Therefore, again by Theor.l and the usual I'Hospital et ®)

k+2) -
()| Ri(t)]
$—(2k+2) 5(75)

is decreasing in € (0, c0), from

is increasing irt € (0, 00) from0to (2k + 1)!L.

Proof of Theorem 1]5.

J. Inequal. Pure and Appl. Math3(2) Art. 20, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MILLS’ RATIO 7

(i) Inview of (1.3) and[(Z}),
_ e
(3.3) O = b

This, (2.4), and Remafk 2.1 yield part (i) of the theorem.
(i) It follows from RemarK 2.[1 that for al > 0,

9k (t) Cr1 Co
e T
" + P + + i
. t) . . L
wherecy, ..., c,_; are nonnegative constants. Heng@i—) is non-increasing it €
¢ 2 |0k (¢ o
(0,00) and gki) > 1forallt > 0. Therefore, the ratlok 9:(1)] = IS
t gr(t) [0s(O)] g(t)

Lo . . t
non-decreasing in € (0,00). Itis also obvious tha{m — 1 ast — oo. Thus, to
Gk
complete the proof of part (i) of the theorem, it remains to show that(t) |6 (¢)] is
increasing int € (0, c0) from 0 to k!. It follows from (3.3 ) that

forall k € {1,2,...} and allt > 0. Hence, to complete the proof of part (i), it suffices

(). .
to show that, for each € {1,2,...}, the ratlowm ((t))‘] is increasing int € (0, co) from
7—1
. Jvi—1(E)] /T . _
0 to j or, equivalently, that the rati %| 1((t))||/ is decreasing im € (0, co) from oo to
Vi

—. But the latter claim follows by induction inusing the identity
J

(= 1/ 1 j =1/t

(3.4) s = Vi€ {2,3,...}Vt>0,
73 (®)] e g ()]

Theoren{ 1.Jl, and the usual I'Hospital Rule for limits; in turn, idenfity|(3.4) follows
from (2.4) and[(2.6). The basis of the induction is provided here by the identity

(oI _ 1 )/t
=+ = vVt >0
mml 2 B
and Propositiof T]2.
(iif) Using part (i) of the theorem and recalliig (1.3) and](2.1), one has

—1)" fip

(3.5) ] + (1) = (=) 6+ (1) =

Next, using Lemma 2]2 and identify (2.2), one obtains

(0 8) e

E

The latter expression is decreasing(tel)"™" in ¢t € (0, c0), in view of Remar.
Now identity (3.%), Theoreth 1.1, and the I'Hospital Rule for limits imply tf#tt)| is
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decreasing t@ in t € (0,00). It remains to notice that, in view of (3.3), one has the
following:

e |0;(0+)| = o if kis 0odd, because then(0) =

0

© ) = 20
ge(0)2(0) .
(2.4); the second equality follows frofn (2.5) (becayfsés odd for everk, and so,
fr(0) = 0).

= 1if k is even; the first equality here follows from (B.3) and

O
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