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ABSTRACT. In this paper, a new system of nonlinear set-valued variational inclusions involving
(H,n)-monotone mappings in Hilbert spaces is introduced and studied. By using the resolvent
operator method associated wi{tH, )-monotone mappings, an existence theorem of solutions

for this kind of system of nonlinear set-valued variational inclusion is established and a new
iterative algorithm is suggested and discussed. The results presented in this paper improve and
generalize some recent results in this field.
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1. INTRODUCTION

Variational inclusions are an important generalization of classical variational inequalities and
thus, have wide applications to many fields including, for example, mechanics, physics, opti-
mization and control, nonlinear programming, economics, and the engineering sciences. For
these reasons, various variational inclusions have been intensively studied in recent years. For
details, we refer the reader {ad [1]/=]21], [23] = [31] and the references therein.

Verma [24| 25] introduced and studied some systems of variational inequalities and developed
some iterative algorithms for approximating the solutions of a system of variational inequali-
ties in Hilbert spaces. Recently, Kim and Kim_[21] introduced a new system of generalized
nonlinear mixed variational inequalities and obtained some existence and uniqueness results for
solutions of the system of generalized nonlinear mixed variational inequalities in Hilbert spaces.
Very recently, Fang, Huang and Thompsaon [9] introduced a system of variational inclusions and
developed a Mann iterative algorithm to approximate the unique solution of the system.
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2 MAO-MING JIN

On the other hand, monotonicity techniques were extended and applied in recent years be-
cause of their importance in the theory of variational inequalities, complementarity problems,
and variational inclusions. In 2003, Huang and Feng [16] introduced a class of generalized
monotone mappings, maximgdmonotone mappings, and defined an associated resolvent op-
erator. Using resolvent operator methods, they developed some iterative algorithms to approx-
imate the solution of a class of general variational inclusions involving maxjpmabnotone
operators. Huang and Fang’s method extended the resolvent operator method associated with an
n-subdifferential operator due to Ding and Luo [6]. In [7], Fang and Huang introduced another
class of generalized monotone operatéfsmonotone operators, and defined an associated re-
solvent operator. They also established the Lipschitz continuity of the resolvent operator and
studied a class of variational inclusions in Hilbert spaces using the resolvent operator associated
with H-monotone operators. In a recent paper [9], Fang, Huang and Thompson further intro-
duced a new class of generalized monotone operathrs;)-monotone operators, which pro-
vide a unifying framework for classes of maximal monotone operators, maximeidnotone
operators, and/-monotone operators. They also studied a system of variational inclusions
using the resolvent operator associated Wihn7)-monotone operators.

Inspired and motivated by recent research works in this field, in this paper, we shall intro-
duce and study a new system of nonlinear set-valued variational inclusions invONing-
monotone mappings in Hilbert spaces. By using the resolvent operator method associated with
(H,n)-monotone mappings, an existence theorem for solutions for this type of system of non-
linear set-valued variational inclusion is established and a new iterative algorithm is suggested
and discussed. The results presented in this paper improve and generalize some recent results
in this field.

2. PRELIMINARIES

Let X be a real Hilbert space endowed with a ndfm|| and an inner produgt, -), respec-
tively. 2% and C'(X) denote the family of all the nonempty subsetsidfand the family of
all closed subsets oX, respectively. Let us recall the following definitions and some known
results.

Definition 2.1. LetT, H : X — X be two single-valued mapping®.is said to be:
(i) monotone, if
(Te —Ty,x —y) >0 forall z,y € X;
(i) strictly monotone, ifI" is monotone and
(Tx —Ty,x —y) =0

if and only if z = y;
(iif) r-strongly monotone, if there exists a constant 0 such that

(T(x) = T(y),x —y) >rlla—yl>  forall z,y € X;
(iv) s-strongly monotone with respect 9, if there exists a constant> 0 such that
(T(x) = T(y), H(z) = H(y)) > Sllz —y|*  forall z,y € X;
(v) t-Lipschitz continuous, if there exists a constant 0 such that
IT(z) =Tyl <tllz -yl  forall z,y € X.
Definition 2.2. A single-valued mapping : X x X — X is said to be:

() monotone, if
(r —y,n(z,y)) >0  forall z,y € X;
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(if) strictly monotone, if
(x —y,n(z,y)) >0 forall z,y € X
and equality holds if and only if = y;
(i) o-srongly monotone, if there exists a constant 0 such that
(x —y,n(z,y)) >dllz —yl>  forall z,y € X;
(iv) 7-Lipschitz continuous, if there exists a constant 0 such that
In(z, y)ll < 7lle—yl,  forall z,y e X.
Definition 2.3. Letn : X x X — X andH : X — X be two single-valued mappings. A
set-valued mapping/ : X — 2% is said to be:
(i) monotone, if
(u—v,x—y) >0, Ve,ye X, ue Mz,ve My;
(i) n-monotone, if
(u—wv,n(z,y)) >0 Ve,y € X,u € Mxz,v € My;
(iii) strictly n-monotone, ifM is n-monotone and equality holds if and onlyxif= y;
(iv) r-stronglyn-monotone, if there exists a constant 0 such that
(u—v,m(x,y)) >r|z—yl? Vo, y € X,u € Mx,v € My,

(v) maximal monotone, ifi/ is monotone and/ + A\M)(X) = X, for all A > 0, wherel
denotes the identity mapping ox;
(vi) maximaln-monotone, ifM is n-monotone and/ + AM)(X) = X, for all A > 0;
(vii) H-monotone, ifM is monotone andH + AM)(X) = X, forall A > 0;
(viii) (H,n)-monotone, ifM is n-monotone andH + AM)(X) = X, forall A > 0.

Remark 2.1. Maximal n-monotone mappingd{-monotone mappings, ard{, n)-monotone
mappings were first introduced in Huang and Fang [16], Fang and Huang [7, 9], respectively.
Obviously, the class ofH, n)- monotone mappings provides a unifying framework for classes

of maximal monotone mappings, maximamonotone mappings, arfd-monotone mappings.

For details about these mappings, we refer the readef t0[[6, 7, 9, 16] and the references therein.

Lemma 2.2([9]). Letn : X x X — X be a single-valued mapping{ : X — X be a strictly
n-monotone mapping and/ : X — 2% an (H,n)-monotone mapping. Then the mapping
(H + AM)~! is single-valued.

By Lemmd 2.2, we can define the resolvent operat, as follows.

Definition 2.4 ([9]). Letn : X x X — X be a single-valued mapping : X — X a strictly
n-monotone mapping antf : X — 2% an(H,n)-monotone mapping. The resolvent operator
Rii% - X — X is defined by

RiiN(z) = (H+AM) ()  forall z € X,
where) > 0 is a constant.

Remark 2.3.

(i) When H = I, Definition[2.4 reduces to the definition of the resolvent operator of a
maximaln-monotone mapping, sele [16].

(i) Whenn(z,y) = = — y for all z,y € X, Definition[2.4 reduces to the definition of the
resolvent operator of &-monotone mapping, see [7].
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(i) When H = I andn(z,y) = = — y for all z,y € X, Definition[2.4 reduces to the
definition of the resolvent operator of a maximal monotone mapping| see [31].

Lemma 2.4([9]). Letn : X x X — X be ar-Lipschtiz continuous mapping{ : X — X
be an(r, n)-strongly monotone mapping and : X — 2% be an(H,n)-monotone mapping.
Then the resolvent operat(b?fjf; : X — X is 7/r-Lipschitz continuous, that is,

| Rifa@) - BEA )| < Zle -yl forall 2,y e X.
’ ’ r
We define a Hausdorff pseudo-metfic: 2% x 2% — (—o0, +00) U {+00} by

D(-,-) = inf ||u — inf [|u —

() = mx {sup i Ju = o] sup int s o]

for any givenA, B € 2%. Note that if the domain oD is restricted to closed bounded subsets,
thenD is the Hausdorff metric.

Definition 2.5. A set-valued mappingl : X — 2% is said to beD-Lipschitz continuous if
there exists a constant> 0 such that

D(A(u), A(v)) < nlju — v, forall u,v e X.
3. SYSTEM OF VARIATIONAL INCLUSIONS

In this section, we shall introduce a new system of set-valued variational inclusions involving
(H, n)-monotone mappings in Hilbert spaces. In what follows, unless other specified, we shall
suppose thak'; and X, are two real Hilbert spaces;; ¢ X; andK, C X, are two nonempty,
closed and convex sets. Lét: X; x Xy — X, G : Xy x Xy — Xy, H;, : X; — X,

n;i + X; X X; — X; (i = 1, 2) be nonlinear mappings. Let: X; — 2%t andB : X, — 2%2 be
set-valued mappingsy/; : X; — 2% be (H;,n;)-monotone mapping§ = 1,2). The system
of nonlinear set-valued variational inclusions is formulated as follows. Find) € X; x Xs,

u € A(a) andv € B(b) such that

0 € F(a,v) + Mi(a)
(3.1)
0 € G(u,b) + Ms(b)

Special Cases

Case 1.If M;(z) = Op(x) and M, = 0¢(y) for all x € X; andy € X5, wherep : X; — RU
{+o0} and¢ : Xy — RU{+o0} are two proper, convex and lower semi-continuous functionals,
Jdy¢ and0¢ denote the subdifferential operatorsofand ¢, respectively, then problem (3.1)
reduces to the following problem: find, ) € X; x X5, u € A(a), andv € B(v) such that

(F(a,v),z —a)+ ¢(x) —p(a) >0, Ve X,
(3.2)

(G(u,b),y —a) + o(y) —o(b) 20, Vy € Xy,
which is called a system of set-valued mixed variational inequalities. Some special cases of
problem [3.2) can be found in [26].

Case 2.If A and B are both identity mappings, then problem [3.2) reduces to the following
problem: find(a, b) € X; x X, such that

(F(a,b),z —a)+ p(z) —¢(a) >0, Ve X,
(3.3

<G(6L, b)v Yy — CL> + ¢(y) - ¢(b> > 07 ‘v’y € XQ:
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which is called system of nonlinear variational inequalities considered by Cho, Fang, Huang
and Hwang([5]. Some special cases of problem| (3.3) were studied by Kim and Kim [21], and
Verma [24].

Case 3.If M;(z) = 0dk,(x) and My(y) = 0k, (y), for all z € K; andy € K,, where
K, C X;andK, C X, are two nonempty, closed, and convex subsetsjyandndd, denote
the indicator functions of(; and K, respectively. Then probler (3.2) reduces to the following
system of variational inequalities: find, b) € K; x K, such that

(F(a,b),z —a) >0, Vxe K,
(3.4)
(G(a,b),y —a) 20, Vye Ky,

which is the problem in[20] with botlh” andG being single-valued.

Case 4.1f X1 = Xy = X, K} = Ky = K, F(X,y) = pT(y) + * —y, andG(z,y) =
vT'(x) +y —z, forall x,y € X, whereT : K — X is a nonlinear mapping; > 0 and

v > 0 are two constants, then problem (3.4) reduces to the following system of variational
inequalities: finda, b) € K x K such that

(pT'(b) +a—b,x —a) >0, VreK,
(3.5)
(vI'(a)+b—a,z—b) >0, Ve kK,

which is the system of nonlinear variational inequalities considered by Verma [25].

Case 5.1f A and B are both identity mappings, the problejn {3.1) reduces to the following
problem:(a, b) € X; x X, such that

0 € F(a,b) + Mi(a)
(3.6)
0 € G(a,b) + My(b)

which is the system of variational inclusions considered by Fang, Huang and Thompson [9].

4. ITERATIVE ALGORITHM AND CONVERGENCE

In this section, by using the resolvent operator method associated( #iti)-monotone
mappings, a new iterative algorithm for solving problém](3.1) is suggested. The convergence
of the iterative sequence generated by the algorithm is proved.

Theorem 4.1. For given(a,b) € X; x Xo, u € A(a), v € B(b), (a,b,u,v) is a solution of
problem [(3.1) if and only ifa, b, u, v) satisfies the relation

a= Ry [Hi(a) = p1F(a,v)],
(4.1)
b= Ry [Ha(b) — paG(u, )],

wherep; > 0 are two constants for = 1, 2.
Proof. This directly follows from Definition 2.4. O
The relation|(4.]1) and Nadl€er [22] allows us to suggest the following iterative algorithm.

Algorithm 4.1.
Step 1. Choose€(ag, by) € X; x X5 and choose, € A(ag) andvy € B(by).
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Step 2. Let

an1 = (1= Nay + ARJ\%’E [Hi(an) = prF(an, va)];
(4.2)
bst = (1= Aby + AREE™ [Ha(by) — paG(un, )],

Mz, p2

where0 < )\ < 1 is a constant.
Step 3. Chooseu,, ;1 € A(a,11) andv, 1 € B(b,.1) such that

[tns1 = unll < (14 (L +71)7") D1 (A(anr1), Alan)),
(4.3)
[ons1 = vall < (14 (14 n) ™) Da(B(bns1), B(ba)),

whereD; (-, -) is the Hausdorff pseudo-metric art: fori = 1, 2.
Step 4.1f a1, bpt1,uny1 andu,yy satisfy [4.2) to sufficient accuracy, stop; otherwise, set
n :=n + 1 and return to Step 2.

Theorem 4.2. Letn,; : X; x X; — X, be r;-Lipschitz continuous mappinggl; : X; — X;
(r;,m)-strongly monotone and;-Lipschitz continuous mappings/; : X; — 2 be (H;,n;)-
monotone mappings for=1,2. Let A : X; — C(X;) be D;-v;-Lipschitz continuous ané :
Xo — C(Xs3) be Dy-vo-Lipschitz continuous. Let : X; x X, — X; be a nonlinear mapping
such that for any givela, b) € X; x X,, F(-,b) is u;-strongly monotone with respect fé,
anda -Lipschitz continuous anél'(a, -) is ¢;-Lipschitz continuous. L&t : X; x Xy, — X, be
a nonlinear mapping such that for any given y) € X; x X, G(z, -) is uz-strongly monotone
with respect taff; and a,-Lipschitz continuous an@'(-, y) is (,-Lipschitz continuous. If there
exist constantg; > 0 for i = 1,2 such that

7'17“2\/512 — 2p1p1 + prod + ToriGaem < 71T,
(4.4)

ToT \/ﬁ% — 2papiz + P30 + TiTa(iye < 1172,

then problem[(3]1) admits a solutidn, b, u, v) and iterative sequences:, }, {b,.}, {u,} and
{v,} converge strongly ta, b, w andv, respectively, wheréa,, }, {b,}, {u,} and{v,} are the
sequences generated by Algorithm 4.1.

Proof. It follows from (4.2) and Lemmp 24 that

lanss — aul|
— ([ = N+ AR (i (00) = prF(an, o)
— (= Naws + AR (Hy (1) = prF(an 1,00 1)| H
< (1= Nllan = @l + | RS (Hi(an) = p1 F(an, va)
— Ryp™ (Hy(an-1) = p1F(an-1, Unfl))H
< (1= Vllaw = |+ A Hr (00) = Hy(@01) = pr P, v0) = F(anr, v
< (1= Mllay — @l + AL (1 Hy (@) = Hi(anr) = pulF(@n, v) = Flan-t, 00l

1
(4.5) + 1 F(an-1,vn) = Fan—1,vn-1)|))-
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Similarly, we can prove that

(4-6) ”bn—i—l - bn” < (1 - /\)“bn - bn—IH
+ )‘:_2<HH2<bn) - HQ(bnfl) - pQ[G(una bn) - G(um bnfl)]H
2
+ |G (tn, bp—1) — G(Un—1,bn-1)]])-

SinceH; are3;-Lipschitz continuous foi = 1,2, F(+,b) is u;-strongly monotone with respect
to H, and«;-Lipschitz continuous(G(x, -) is uo-strongly monotone with respect td, and
ap-Lipschitz continuous, we obtain

1\ (an) = Hi(an-1) = pi[F(an, vn) = F(an-1,va)]||*
= [[Hi(an) = Hi(an-1)[I* = 2p1(F (an, va) = F(an-1,va), Hi(an) = Hi(an-1))
+ P11 (@, vn) = F(an-1,va)[|*
(4.7) < (87 = 2011 + piad)llan — an|?
and
[H2(bn) — Ha(bn—1) = p2[G (tn; bn) — G (un, b1)] ||
= [[Ha(bn) = Ha(bn1)[I* = 202(G (tn, bn) — G(tn, bp1), Ha(by) — Ha(bn-1))
+ 031G (i, by) — G, b))
(4.8) < (83 = 2papsa + p503) by — by |

Further, from the assumptions, we have

(49) ”F(an—la Un) - F(an—lavn—l)n S Cl”vn - Un—l”
< (1 +n Y|y, — by,
(4.10) 1G (tny br1) = G(un—1,bp1)[l < Gollttn — wp1 |

< Gn(l+n"Y]lan = anal-
It follows from (4.5) —[4.1D) that

lanss = anll < (1= A+ A2 /B = 201701 + 9707 lan — an 1
+A%C172(1 + nil)“bn - bn—l”u

(4.11)

s = ball < (1= A+ A2 /B8 = 202125 + 303 16w — b
L +>\:_§CQ’71(1 +n ) |an — an_1]|.
Now (4.11) implies that

lans = anll + [[bn1 = ball

T T
< (1 -+ Ar—l\/ﬁf —2p1 + piod + )‘T_2§2'71(1 + n_l)) lan — an_1]]
1 2

T T
(1= A A5~ 2 e + AT G147 ) b, = bl
2 1

(4.12) < A=A+ M) (lan — an-1]| + [|bn — bp-1l]),
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where

T T
en = maXx {T_l\/ﬁ% - 2p1,u1 + p%a% + T_QCQ/yl(l + n_l) )
1 2

T T _
f\/ﬁ% — 2papia + P33 + r—lmz(l +n 1)} .
2 1

Letting

T T T T
0 = max {—1\/5% — 20111 + p2d + 2o —2\/522 — 2pafia + p303 + —14172} :
T T2 T (&1

we have tha#,, — 6 asn — oo. It follows from condition [(4.4) thab < 6 < 1. Therefore, by
(4.12) and) < X < 1, {a,,} and{b,} are both Cauchy sequences and so there exis; and
b € X5 such that,, — a andb,, — b asn — oo.

Now we prove that,, — v € A(u) andv,, — v € B(b) asn — oo. In fact, it follows from
(4.9) and|(4.10) thafu,,} and{v, } are also Cauchy sequences. Therefore, there exist\;
andv € X, such that:,, — v andv,, — v asn — oo. Further,

d(u, A(u)) = inf{|ju —t|| : t € A(a)}
< lu = un] + d(un, A(a))
< llu = ) + Dy(Afan), A(a))
< Jlu = wall + Gl — al] = 0.

Hence, sincel(a) is closed, we have € A(a). Similarly, we can prove that € B(b).
By continuity,a, b, u andv satisfy the following relation

a= Ry [Hi(a) = p1F(a,v)],

b= Ry2"™ [Ha(b) — paG(u,b)].

By Theoren] 4.1, we know thdt:, b, u, v) is a solution of probleni (3|1). This completes the
proof. O
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