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1. INTRODUCTION

Theelementary symmetric functiongn variables are defined by

eo(T1, Ty ..., x,) = 1
61($1,$2,...,xn) = x1+x9+ -+,
62(1‘17@,-.-,1‘”) = Z il

i<j
en(T1, Ty .. Xy) = T1T2...Ty.

The differente,,, being of different degrees, are not comparable. However, they are connected
by nonlinear inequalities. To state them, it is more convenient to consider their averages,

er(x1, Ty .., Tp)
Ek(xthv"‘?xn): - 7: =
(%)
and to writeF, for Ey(xy, zs, ..., z,) in order to avoid excessively long formulae.

Theorem 1.1. (Newton[17] and Maclaurin[14]). LetF be ann—tuple of non-negative num-
bers. Then:

(1.1) EXF) > By a(F) - Ega(F), 1<k<n-—1
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2 CONSTANTIN P. NICULESCU

unless all entries of coincide;

(1.2) E\(F) > EY*(F) > -+ > EN"(F)
unless all entries of coincide.

Actually, the Newton inequalitie$ (1.1) work fer—tuples of real, not necessarily positive
elements. An analytic proof along Maclaurin’s ideas will be presented below. In Sé¢tion 2
we shall indicate an alternative argument, based on mathematical induction, which yields more
Newton type inequalities in an interpolatory scheme.

The inequalities (1]2) can be deduced frgm](1.1) since

(EoEs) (E1Es) (ByEy)? .. (By—1Epn)" < B2EAES .. EX
givesEf,, < E;t! or, equivalently,

1/k 1/(k+1
E/* > B,

Among the inequalities noticed above, the most notable is of courséthe- G M inequal-

ity:
(x1+3:2+---—|—acn)n
> X1T " -+ Ty,
n

for everyzy, xs,...,x, > 0. A hundred years after Maclaurin, Cauchy [5] gave his beautiful
inductive argument. Notice that thé)M — G M inequality was known to Euclid [7] in the
special case where = 2.

Remark 1.2. Newton’s inequalities were intended to solve the problem of counting the number
of imaginary roots of an algebraic equation. In Chap. 2 of part&hmetica Universalisen-

titted De Forma ZAquationisNewton made (without any proof) the following statemeaiven

an equation with real coefficients,

apx™ + a2 4+ a, =0 (ag #0),

the number of its imaginary roots cannot be less than the number of changes of sign that occur
in the sequence

2 2
CL2 ( 3] ) a2 Qo < Qp—1 > Qp, Ap—2 a2
0 ] T Ty o N Tey ] Ty Ty n
@) G © Go) ) GGl
Accordingly, if all the roots are real, then all the entries in the above sequence must be non-
negative (a fact which yields Newton’s inequalities).
Trying to understand Newton’s argument, Maclaurin [14] gave a direct proof of the inequal-

ities (1.1) and[(1]2), but the Newton counting problem remained open until 1865, when J.
Sylvester[[23],[[24] succeeded in proving a remarkable general result.

Quite surprisingly, it is Real Algebraic Geometry (not Analysis) which gives us the best
understanding of Newton’s inequalities. The basic fact (discovered by J. Sylvester [22] in 1853)
concerns theemi-algebraic characteof the set of all real polynomials with all roots real.

Theorem 1.3. For each natural number > 2 there exists a set of at mast— 1 polynomials
with integer coefficients,

(13) Rn,l(ﬂfl, R ,l’n>, ey Rn,k(n)<x17 e 7In)7
such that the monic real polynomials of order

P(x)=2" +aiz" "+ -+ ap,
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which have only real roots are precisely those for which
Ryi(ay,...,a,) >0, ..., Rypmy(ar, ... a,) >0.

The above result can be seen as a generalization of the well known fathehabts of a
quadratic polynomiak? + a,z + a- are real if and only if its discriminant

(1.4) Dy(1,a1,az) = a% — 4das,

iS non-negative .

Theoren{ 1.8 is built on the Sturm method of counting real roots, taking into account that
only the leading coefficients enter the play. It turns out that they are nothing but the principal
subresultant coefficients (with convenient signs added), which are determinants extracted from
the Sylvester matrix.

For evident reasons, we shall call a fanﬂ]?n,k)’,j(") adiscriminating family(of ordern). For
the convenience of the reader, a summary of the Sylvester algorithm will be presented in the
Appendix at the end of this paper.

In Sylvester’s approact®,, 1 (a1, . . . , a,) equals theliscriminantD,, of the polynomialP(z) =
"t a4 4, e,

Dn:Dn(laala"'aaf’n): H (ﬂfi—wj)2,

1<i<j<n
wherexr,, ..., z, are the roots of(z); D,, is a polynomial (of weight? — n) in Z[ay, . . ., a,]
as being a symmetric and homogeneous polynomial (of degree) in Z[z, . . ., z,]. See, for

details, [1] or [13]. Unfortunately, at present no compact formulaldgris known. According
to [21], the number of non-zero coefficients in the expression for the discriminant increases
rapidly with the degree; e.gl)y has 26095 terms!

Forn € {2,3} one can indicate discriminating families consisting of just a single polynomial,
the corresponding discriminant. An inspection of the argument given by L. Euler to solve in
radicals the quartic equations allows us to write down a discriminating family fer4. See
Sectiorj 4 below, where the computation was performed by using the Maple version incorporated
in Scientific WorkPlace 2.5.

Due to the celebrated result on the impossibility of solving in radicals the arbitrary algebraic
equations of orden > 5, we cannot pursue the idea of using resolvants in the general case.

Remark 1.4. Having a discriminating family fon. = N, we can easily indicate such a family
for eachk € {1,..., N}. The trick is to replace & (x) of degreek by z¥ =% P(z), which is of
degreeN.

Also, having a discriminating faminRmk)',j(:”l) for somen > 2, we can decide which monic
real polynomialsP(x) = z" + a;2" ! + --- + a, have only non-negative roots. They are
precisely those for which

—a; >0,...,(-1)"a, >0
and
le(al, e ,CLn) Z O, ey Rn,k(n)(al, e ,an) Z 0.
Notice that under the above circumstances; 0 yields P(z) # 0.

The Newton inequalitie§ (I.1) were proved Inl[11] following Maclaurin’s argument. The
basic ingredient is the following lemma, a consequence of repeated application of the Rolle
Theorem, which we give here under the formulation of J. Sylvestér [24]:

Lemma 1.5. If
F(x,y) = cox™ + @™ 'y + -+ cpny™
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is a homogeneous function of théh degree inz and y which has all its rootsc/y real, then

the same is true for all non-identicalequations% = 0, obtained from it by partial differ-

entiation with respect ta andy. Further, if E' is one of these equations, and it has a multiple
root «, thena is also a root, of multiplicity one higher, of the equation from whicis derived

by differentiation.
Any polynomial of thenth degree, with real roots, can be represented as

Eox™ — (T) Eiz" 4 (Z) Eyx" % — . 4 (=1)"E,

and we shall apply Lemnja 1.5 to the associated homogeneous polynomial
F(m, y) = onn - (7;}) Elx”_ly + (;L) Elxn_QyQ — (_1)n nyn‘

Considering the case of the derivati\@% (fork =0,...,n—2) we arrive to the fact
that all the quadratic polynomials

Ek_le — 2Epxy + Ek+1y2

for k = 0,...,n — 2 also have real roots. Consequently, the Newton inequalities express
precisely this fact in the language of discriminants. For this reason we shall refer|to (1.1) as the
guadratic Newton inequalities

Stopping a step ahead, we get what S. Rosseét [20] calleclutiie Newton inequalities

(1.5) 6By Eyr1EpioErys + 3Ep 1 By > AEVE} , + ELEL s+ 4E} | Epys
fork =0,...,n — 3. They are motivated by the well known fact that a cubic real polynomial
3+ a1x2 + asx + as

have only real roots if and only if its discriminant

D3 = Ds(1,a1,a9,a3)

= 18ajasas + ata; — 27a3 — 4a3 — 4a’as
is hon-negative. Consequently the equation
Eya® — 3Ep17%y + 3By 00y — Epyay® =0

has all its roots:/y real if and only if (1.5) holds.
S. Rosset [20] derived the inequaliti¢s {1.5) by an inductive argument and noticed that they
are strictly stronger thaf (1.1). In fadt, ([L.5) can be rewritten as

A(Ers1BErys — By o) (ErEira — Epy) > (Exy1Exya — BxErys)’
which yields [(1.1). Tha{ (I]1) does not impJy (]L.5), see the case of the cubic polynomial,
2% — 8.92% + 261 — 24 = 0,
whose roots are
r1 = 1.8587, x5 =3.5207—0.71933:, x3=3.5207 + 0.71933:.

As concerns the Newton inequalitied’,) of ordern > 2 (when applied to strings ofi > n
elements), they consist of at mast- 1 sets of relations, the first one being

D, (1, (—1)! (T) Egj (—1)? (Z) Egj e (1) <Z> Eg:") >0

fork € {0,...,m —n}.
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Notice that each of these inequalities is homogeneous (e.g., the above ones consists of terms
of weightn? — n) and the sum of all coefficients (in the left hand side).is

2. AN INDUCTIVE APPROACH OF THE QUADRATIC NEWTON INEQUALITIES
Our argument will yield directly the log concavity of the functidns- £}, :
Theorem 2.1. Suppose that, 5 € R, andj, k£ € N are numbers such that
a+pf=1 and ja+kBe{0,...,n}.
Then
Ejoirs(F) > ES(F) - BL(F),

for everyn—tuple F of non-negative real numbers. Moreover, equality occurs if and only if all
entries ofF are equal.

The proof will be done by induction on the length &t following a technique due to S.

Rosset[[20].

According to Rolle’s theorem, if all roots of a polynomi&ll € R[X] are real (respectively,
real and distinct), then the same is true for its derivakteGiven amm—tuple F = (x4, ..., z,),
we shall attach to it the polynomial

- n
Pr(x) = (x—21)... (z—2) = Y (-1) (k> Ey(xy,. .. xp) 2™k

k=0

The(n — 1) —tuple 7 = {y1,...,yn—1}, consisting of all roots of the derivative @t(z)
will be called thederivedn—tuple of F. Because

n—1

@) o= = 3 0 (M ) B e

and

- 3 (” ; 1)Ek(x1, ik

We are led to the following result, which enables us to reduce the number of variables when
dealing with symmetric functions.

Lemma 2.2. E;(F) = E;(F') foreveryj € {0, ..., |F| — 1}.
Another simple remark is as follows.

Lemma 2.3. Suppose thaF is ann—tuple of real numbers and ¢ F. Put F~! = {1/a|a €
F}. Then

Ej(F) = Bnj(F) | En(F)
for everyj € {0,...,n}.
We move now to the proof of Theorgm P.1.
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Proof of Theorer 2]1For | F| = 2 we have to prove just one inequality namely,

2
r|+x
1’1$2§< 12 2) )

valid for everyz,, 25 € R. Clearly the equality occurs if and onlyif, = z-.

Suppose now that the assertion of Theofem 2.1 holds férdliples witht < n — 1. Let F
be ann—tuple of non-negative numbefa > 3) and letj, k € N, o, 5 € R, \ {0} be numbers
such that

a+0=1 and ja+kBe{0,...,n}.
According to Lemma@ 2|2 (and to our induction hypothesis), we have
Ejoirs(F) > ES(F) - BY(F),

except for the case wheje< k = n or k < j = n. Suppose, for example, thak k& = n; then
necessarilya + nf < n. We have to show that

Ejoins(F) = EX(F) - EJ(F).

If 0 € F,thenE,(F) = 0, and the inequality is clear. The equality occurs if and only if
Eiaing(F') = Ejainp(F) = 0, i.e. (according to our induction hypothesis), when all entries
of F coincide.

If 0 ¢ F,then by Lemma 2|3 we have to prove that

E (:’r_l) 2 Eg—j(f_l)7

n—ja—npg
or equivalently (see Lemnja 2.2),
Enjans (F71)) > B3 (F7Y)).
The latter is true by virtue of our induction hypothesis. O

Remark 2.4. The argument above covers the Newton inequalities even-fduples of real
(not necessarily positive) elements.

The general problem of comparing monomialsfin . .., £, was completely solved by G.
Hardy, J.E. Littlewood and G. Pdlya in [11], Theorem 77, page 64:

Theorem 2.5.Letay, ..., a,, B4, ..., B, be non-negative numbers. Then
BN (F) oo BRH(F) S BY(F) oo BI(F)
for everyn—tuple F of positive numbers if, and only if,
A + 20041 + -+ (n—m+ 1)y, > B+ 20041+ -+ (n—m+1)8,

for 1 < m < n, with equality whenn = 1.

An alternative proof, also based on the Newton inequalifieg (1.1) is given_in [15], p. 93,
where the final conclusion is derived by a technique from the majorization theory.

3. THE QUARTIC NEWTON |INEQUALITIES

While the cubic Newton inequalities can be read off directly from Cardano’s formulae, the
quartic case is a bit more complicated but still alongside the methods of solving the algebraic
equations in radicals. The argument of the following lemma can be traced back to L. Euler.
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Lemma 3.1. The roots of a quartic real polynomial
y' oy’ +qy
are real if, and only if, the roots of the cubic polynomial

2
3, D o P-4 g
SR T 64

are non-negative .

Proof. In fact, lettingy = u + v + t we infer that

W+ Htt = —p/2
ot + 0+ = (pP —4r) /16
u ot = ¢*/64

i.e.,u?, v?, t* are the roots of the cubic polynomial + & 2> + ’% z— % The conclusion of
the statement is now obvious. O

Lemma 3.2. The roots of the cubic polynomial

2
_ s P oA g
Q)=+ + =2

are non-negative if, and only if,

p <0, p* —4r > 0andDs(1,p/2, (p* — 4r) /16, —¢*/64) > 0.

Proof. It was already noticed that the roots@fz) are real if and only if its discriminant is non-
negative. Then the necessityf 0 andp? — 4r > 0 is a consequence of Viéte's relations.
Their sufficiency is simply the remark that (under their preseritfe) < 0 for z < 0. OJ

In order to write down a discriminating family of order= 4, we have to notice that the
substitution

r=y—a/4
changes the general quartic equation
2t + a1 + avx® +azx + a4, =0

to

3a2 a3 a1a 3at aa a1a
y4+<a2_?1)y2+<§1_ 122+‘1*°’)y_25é+ 5 1 =0

J. Inequal. Pure and Appl. Mathl(2) Art. 17, 2000 http://jipam.vu.edu.au/
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According to Lemma 3]1 and Lemnha B.2, a discriminating family for the quartic monic
polynomials is

3a? 3ai )
R471 (Gl, as, as, a4) = D3 1, a9 — — /2, - — QG2 + ajas + Ay — 4@4 /16,

8 16
a3 aia 2
1 142
- = - —= 64
(-2 wn) o)
= —ia‘laz ! —i— ) aasaqua ! a’ada
T 4096 14 102413 2048 172N g4 172
—I—ia%agai — —a1a3a4 -+ —a%ag §—|— i 10203
256 2048 4096 2048
a1a2a4a3 a1a3a4 %CL% ia%ai
256 64 1024 32
L 9 .2 27 . 1 L 1 3
— a a5a
25672 T 1096 T 25672 T 1™
= Dy (1,a,az,as,ay) /4096
3a?t
R4’2 (CLl, ag,ag,a4) = ]__61 — CLlCLQ + aijas + CL2 — 4@4
3a?
R4,3 (ala G2, Aas, CL4) - ?1 —as.

The above three relations are written in this order to be in agreement with the general scheme
of constructing discriminating families in terms of subresolvents. See the Appendix at the end
of this paper.

Thequartic Newton inequalitiewill represent the necessary and sufficient conditions under
which all polynomials

EklA - 4Ek+1l’3 + 6Ek+2£l}2 - 4Ek+333' + Ek+4 (k' € {O, N 4})
have only real roots. They are

Ry (—4Ey11/Ey, 6Epyo/ By, —4Ey 3/ By, Erysa/Ey) >0
(3.1) Ryp (—4Ek11/Eg, 6Epyo/ By, —4Ek 43/ By, Erya/Ey) > 0,
Ry3(—4E11/Ey, 6Epy2/ By, —4Ey 13/ Ey, Eyys/Ey) >0

or, expanding and then eliminating the denominators,

27 BR B+ BLEL, — SABLEL LB}y — 64 EL Bl — 1S BRER R,
+81 BBy 5 Ejva — 27 E£+1E1§+4 +36 B B o By
+108 By By B0 E2 o + 108 B}, Eypo B Erps — 54 B2, B} By
180 By By1 B2y Ey s Epya + 54 E2Ey 0 E} 4 Epss — 6EL B2 B 3 Fria
+54 By}, Epin B2, , — 12 B2Ep 41 Eyys B2, , > 0,

O F2E? ) + 4 E2Epy1 Frys — 24 ByER, Epas + 12 BL | — B3y > 0,

E2,, — ExEpy > 0.

The explicit computation of the family (3.1) (as indicated above) was possible by using the
Maple version incorporated in Scientific WorkPlace 2.5.
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4. AN APPLICATION TO BLUNDON’SINEQUALITIES

Usually, the Newton inequalities can be used either to derive new inequalities, or to conclude
that certain polynomials have complex roots. The above analysis on the cubic equations leads
us to the following geometric result.

Lemma 4.1. Consider the cubic equation
22+ ax? +asr +a3 =0

with real coefficients. Then its roats, x», x3 are the side lengths of(@ondegenerateriangle
if, and only if, the following three conditions are verified:

i) 18ajasas + ala3 — 27a3 — 4a3 — 4a3az > 0,

||) —a; >0, ay >0, —ag>0,

|||) ai{’ —4aias + 8az > 0.

Proof. According to Remark 1}4 above and the discussion after Lemma 1.5, the conjunction i)
& ii) is equivalent to the positivity of the roots of the given equation. Thenx,, x3 are the
side lengths of a (hondegenerate) triangle if, and only if,

T14+T9— 23>0, 294+23— 21 >0, 234+21— 29 >0,
i.e., if, and only if,
(x1 + g — 23) (g + 23 — 1) (23 + 21 — 22) > 0.
Or, an easy computation shows that the last product egéialsta; a; + 8as. O

Corollary 4.2. (W.J. Blundon2]). Three positive numberg R andr are respectively the
semiperimeter, the circumcircle radius and the incircle radius of a triangle if, and only if, the
following inequalities are verified:

(4.1) 2R+ 10Rr —1* — 2(R —2r)\/ R(R — 2r) < p?
< 2R*4+10Rr —r* + 2(R — 2r)\/ R(R — 2r).

Proof. The NecessitAs is well known, the side lengths are the roots of the cubic equation
4.2) 2 — 2px* + (p* +r* + 4Rr)x — 4pRr = 0.
In this case the condition i) in Lemma 4.1 leads us to
p' —2(2R* + 10Rr — r*) p* 4+ 64rR® + 48r°R* + 12r°R + r* < 0
ie.,
(P> — 2R> — 10Rr +r?)* < 4R (R — 2r)°
which implies both Euler’s inequalitig > 2 and W.J. Blundon’s inequalities.

The SufficiencyWe have to verify that the equatidn (B.2) fulfils the hypothesis of Lefnma 4.1
above. The conditions i) and ii) are clear. As concerns iii), we have

a? — 4ajas +8az = —8p° +8p(p® + 1> +4Rr) — 32pRr
= 8pr? > 0.
O
The problem of the equality in the Blundon inequalities was settled by A. Lupas [12]: pre-
cisely, the equality occurs in the left-side hand inequality if, and only if, the triangle is either
equilateral or isosceles, having the basis greater than the congruent sides. In the right-side hand

inequality, the equality occurs if, and only if, the triangle is either equilateral or isosceles, with
the basis less than the congruent sides.

J. Inequal. Pure and Appl. Mathl(2) Art. 17, 2000 http://jipam.vu.edu.au/
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5. OTHER FORMS OF NEWTON INEQUALITIES

If P(x) = 2"+ a;2™ ! +-- -+ a, is a real polynomial whose roots are real, then the same is

true for
i) ()
r+ay A Ay .
1 n

This result appears as Problem 719(ih [8]. The interested reader will find there not only
the details of proof, but also a large generalization. See also [19], Part V of vol. Il. As a
consequence, we get the following.

Proposition 5.1. All the Newton inequalities satisfied by the functidnsare also satisfied by
the functions;,.

Particularly,
ai > ap_jap, forallk=1,...,n—1
unless all roots of’(x) are equal; we made here the conventigr= 1. This latter fact was first
noticed by L'Abbé Gua de Malves in 1741. Its proof in the case-efuples of non-negative
numbers is quite simple and appears as the first step in deriving the Newton inequalitiés in [11],
page 52.
From the Taylor’'s expansion of a polynomial,

n k
PE) = Y 4 @) (- a)

A5 () e

we infer immediately thelifferential formof Newton'’s inequalities:
d*P\* n—k+1 dt'P dlp
dz* n—k drktl  dak-1
except when all roots aP coincide. In fact, even more is true.

Proposition 5.2. Suppose thaP () is a real polynomial with real roots andeg P = n. Then
all the Newton inequalities satisfied by the functidfsremain valid by replacing them with
the functions

(5.1) forallk=1,....,n—1,

dnkp
—1)" k- .
( ) dxn—k
In the simplest case, (5.1) gives us
Pl2 > L PP//
-_ n — 1 )

which is stronger than what most textbooks offer,

P’ / P'p — p'2
(5) =" <0

One can also formulatefanite difference analoguef the Newton inequalities.
Proposition 5.3. Let

P(x):coJrZckw(x—l)...(x—k‘+1)

J. Inequal. Pure and Appl. Mathl(2) Art. 17, 2000 http://jipam.vu.edu.au/
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be a real polynomial whose roots are real. Then all the Newton inequalities satisfied by the
functionsE),, are also satisfied by the functions

Cro=(—1)""%cpy / (Z) Cn.
Proof. In fact, according to a result due to F. Brenti [3], Theorem 2.4.2, if
P(x):co—i—z cgr(x—1)...(r—k+1)
k=1

is a real polynomial whose roots are real, then all roots of

are real and simple. Actually Brenti discussed only the case where all roétgcofare non-
positive, but his argument also works in the general case of real roots. O

The inequalities of Newton have a companion for matrices, due to the well known connection
between the entries of a matrik = (a;;); ; € M,(R) and its eigenvalues. In fact, by defining
the symmetric functions of as

Eb@4> L
1
Ei(A) - > ay,
B (A i @
2(4) n(n —1) ; Arj Ok
E.(A) det A,

one can show that
Ey(A) = Ey(c(A))
whereo (A) denotes thepectrunmof A, i.e., the set of all its eigenvalueis particular, Theorem

[1.7 allows us to retrieve the following well known generalization of g — G'M inequality:
If A€ M,(R)isasymmetric matrix, then

(Trace A

n

forevery ke {l,...,n},

) > det A,

unlessA is a multiple of the identity.

Remark 5.4. There is still another possibility to look at the Newton inequalities in the non-
commutative framework, suggested by the following analogug?f> E,. For self-adjoint
elements,, ..., A, inaC*—algebral we have

1 & ! 1
— > i .
k=1 i#k

However, even the form of the M/ — G M inequality in this context seems to be open; $ée [9]
for a new approach on this matter.

Possibly, the recent paper [10] of Gelfand et al. on symmetric functions of variables in a
noncommutative ring, will eventually yield a better understanding of the whole problem on the
analogues of Newton’s inequalities.
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All inequalities in terms of symmetric functions can be equally expressed in teridevef
ton’s sums

So(x1, %2, ..., Ty) = n
sp(y, 2, xn) = ¥+ a4 4 2F fork > 1.
In fact, if £ < n, then we have the triangular system of equations
si—e; = 0

So — €151 +2€2 =0

Sp—e18p_1 + -+ (=DFke, = 0
and ifk > n we have

Sk —€18k—1 + -+ + (=1)"e, 85—, = 0.

A sample of what can be obtained this way is the following inequality, noticed in [6], pp. 179
and 187:For a,b,c,d € R,
a®+ 0%+ 2+ d?\° _ ((abe+abd + acd + bed 2
4 4

unless: = b = ¢ = d. In fact, we have to prove that £ —3E,)® > F2 (unlessa = b=c=d).
Or, according to Newton'’s inequalities,

(4E? — 3E,)* > B3 > E3

unlessa = b=c=d.

6. APPENDIX. SYLVESTER 'S ALGORITHM FOR FINDING A DISCRIMINATING FAMILY
The set of all pointgay, . .., a,) of R™ where the polynomial
P(x)=a2"+aa" '+ +a,

has exactlyn real roots can be described as the set of solutions of a suitable set of polynomial
inequalities with integer coefficients,

Ryi(ar,...,a,) >0, ..., Rypmy(a,...,a,) > 0.

This is a consequence of Sylvester’s theory on subresultants, briefly presented in what fol-
lows:

The Sylvester matriattached ta” and P’ (= the derivative ofP) is the matrix\/, of dimen-
sion(2n — 1) x (2n — 1), defined by

Qn, ap—1 Qp_o ... Q@9 aq 1 ... 0

0 an ap—1 ... a3 as aq ... 0

M. — 0 0 0 o Qp Ap—1 Ap—2 o1
7| an1 2ap-2 3a,3 ... (n—1a; n 0
0 n1  20p9 ... (n—=2)ay (n—1)ay n

0 0 0 ... 0 Qp—1 2099 ... N

Its determinant,
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is called theesultantof P and P’. Because the leading coefficient Bfis 1, we also have
ro = Dp(1,aq,...,a,).

For eachj € {1,...,n— 1} we consider the matrix/; of dimension(2n — 1 — 2j) X
(2n — 1 — 2j) , obtained by removing from/,
e the lastj columns
e the rows with indices fronfn — 1) —j +1ton — 1
e the lastj rows.

Then thesubresultant of ordey is the determinant; of the (2n — 1 — 2j) x (2n — 1 — 2j)
submatrix of/; obtained of)/; by including all its rows, the lastn — 1 — 25 — 1 columns
and the column of index + 1. Clearly, all subresultants are polynomialsip. . . , a,,. Viewed
this way, they constitute a discriminating family of orderin fact, the dominant coefficients of
the Sturm sequence éfand P’ are precisely their subresultants (with convenient signs added).
This fact is proved in a number of monographs such as that of R. Benedetti and J.-J/ Risler [1].

Example 6.1.Let P(z) = 2® + a2 + asx + a3. Then:

as Qa9 aq 1 0
0 as a9 aq 1
ro=det | as 2a; 3 0 0 | =27a2 — 18ajasas + 4aza? + 4a3 — a3a?
0 a9 2@1 3 0
0 0 a9 2(11 3
as aq 1
ri=det | 2ay 3 0 | =6ay— 2a3
a9 2@1 3
ro = det (3) = 3.

The number of the real roots &f(x) is given by the Sturm sequence attache®ta@), when
restricted to the leading coefficients,

2 3% — (6a2 — 2af) r, — (27a§ — 18ayazas + 4azas + 4aj — a%a%) .
Accordingly, in order to assure th&(z) has 3 real roots, we have to impose that
V(=00) = V() =3,

whereV'(—oo) andV (co) denote the numbers of sign changes-ab and respectively ato.
That forces

a? —3a; >0 and 18ajasasz + alaj — 27a; — 4a3 — 4ajaz > 0.

However, as noticed in the Introduction, the first inequality is a consequence of the second
one.
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