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Abstract

In the present paper we give the rate of convergence for the linear combi-
nations of the generalized Durrmeyer type operators which includes the well
known Szasz-Durrmeyer operators and Baskakov-Durrmeyer operators as spe-
cial cases.
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Durrmeyer [] introduced the integral modification of Bernstein polynomials so
as to approximate Lebesgue integrable functions on the intgrvdl We now
consider the general family of Durrmeyer type operators, which is defined by

MY S0 = (=3 pun @) [ paf Ol cer

wheren € N, n > max {0, —c} andp,, () = (-1)" f}—?gp%v) (x). Also {¢,}

is a sequence of real functions having the following propertie® or}, where
a > 0andforalln € N,v € NU {0}, we have

() ¢, € C*|0,a], ¢, (0) = 1.
(1) ¢, is complete monotonic.
() There exist: € N: ¢\ = —ng{")., n > max {0, —c} .
Some special cases of the operatdrg)(are as follows:

1. If ¢ = 0,0, (x) = e "*, we get the Szasz-Durrmeyer operator.

2.If c =1,¢,(z) = (1 +x) ", we obtain the Baskakov-Durrmeyer opera-
tor.

3.1f ¢ >1,¢,(x) = (1+cx)*, we obtain a general Baskakov-Durrmeyer
operator.

Rate Of Convergence For A
General Sequence Of
Durrmeyer Type Operators

Niraj Kumar

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 3 of 23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:neeraj@nsit.ac.in
http://jipam.vu.edu.au/

4.1f c = —1,¢, (z) = (1 — x)", we obtain the Bernstein-Durrmeyer opera-
tor.

Very recently Srivastava and Guptd] [studied a similar type of operators
and obtained the rate of convergence for functions of bounded variation. It is
easily verified that the operatork.{) are linear positive operators and these op-
erators reproduce the constant ones, while the operators studiddapioduce
every linear functional for the cagse= 0. Several researchers studied different
approximation properties on the special cases of the operatdysthe pioneer
work on Durrmeyer type operators is due to S. Gtip Yijay Gupta (see e. g.

[4], [5]), R. P. Sinha et al.5] and Wang and Guol[l], etc. It turns out that the
order of approximation for such type of Durrmeyer operators is at¢st!),

how so ever smooth the function may be. In order to improve the order of ap-
proximation, we have to slacken the positivity condition of the operators, for
this we consider the linear combinations of the operatbry.( The technique

of linear combinations is described as follows:

-1

1 dyt dy? o dy* Saon(f,x) dyt dy? ... dy*

1 dyt dy?r o " San(f,x) dit di? o "
Sn,k’(fy l‘) = e o . e e

1 dt 4 ... d.* San(f,z) db a2 ... d.*

Such types of linear combinations were first considered by Mpio[improve
the order of approximation of exponential type operators. In the alternative form
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the above linear combinations can be defined as

k
Su(f2) =Y c(j, k)San(f. ),
j=0

where
k

H

k # 0 and C(0,0) =1.

175J

If feL,[0,00),1<p<ooandl<a; <asz<ay<by <bs<b <00
andl; = [a;,b;], i = 1,2, 3, the Steklov meatrf,, ,, of m™ order corresponding
to f is defined as

funtty = [ [ (1

It can be verified§, 10] that

—) AR )Hdt,, tel.

(i) f,m has derivative up to ordern, féf,’i{l) € AC(Ly) andf,gf’,f,ﬂ exist almost

every where and belongs 1g,(1; );
(T)

n) < Kln_rw'l‘(f7n7p7 Il)! r= 172737 cee, M

iii) [If — fn,m”Lp(]Q) < Kown(f,m,p, 11);

W) [£7nll ) gy < Esn™ 1N,y
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S K477_Twr(f7 n, D, Il)
Ly(I1)

) |

£

whereKs, i = 1,2, 3,4 are certain constants independeny @fnd.
In the present paper we establish the rate of convergence for the combina-
tions of the generalized Durrmeyer type operatorg,ja-norm.
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To prove the rate of convergence we need the following lemmas:

Lemma 2.1. Letm € N U {0}, alsopu, .(x) is them order central moment

defined by
i = Su((t =)™ 2) = (1= ) 3 poa(a) / Po(8)(t — )",
v=0 0
then

(i) tnm(x)is a polynomial inz of degreem.

(i) pn.m(x) is a rational function inn and for each) < x < 0o fiym(x) =
O (n~lm+0/2)

Remark 2.1. Using Hélder’s inequality, it can be easily verified that(|t — z|" , z)

= O(n~"/?) for eachr > 0 and for every fixed < z < co.

Lemma 2.2. For sufficiently largen andq € N, there holds
Spk ((t —2)0,2) = n~* L F(q k,z) + o(1)},

whereF'(q, k, z) are certain polynomials inc of degreeg and0 < z < oo is
arbitrary but fixed.

Proof. For sufficiently large values of we can write, from Lemma.1

Qo(z) Q@) Qq/2)(%)
[(g+1)/2] * pllg+1)/2]+1 na

Sp((t—x)% x) = -
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whereQ;(z),i =0, 1,2, ... are certain polynomials im of at most degree.

ThereforeS,, ;. ((t — z)?, z) is given by

1 dyt dg? o gt |
1 odyt d?o d"
1 4! d7* .. "

(don)[@ D72 T (don)lla+1)/2

@)@ D78 T (@)l D/2

@)@ D72 T (@)@ D72+

= n~* D IF(q, k) + 0(1)},

Lemma 2.3 (F]). Letl < p < oo, f € Ly[a,b], f'™ € AC [a,b] and f(™) €

L, [a,b], then

17O o < © LU0

Q)+ e
Q)+ o

Qo) i@ é,;l 'cé,f

15yt }

j=1,2,3,...,mandC is a constant depending gnp, m, a, b.
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Lemma 2.4.Let f € L,[0,00), p > 1. If fE+D ¢ AC(I)) and f?+2) ¢
L,(1;), then for alln sufficiently large

22) 1Suklf:) = Fllgyiy < Con DL FED 1 g

Also if f € L,[0,00), f***) € Ly(I;) with f*¥ € AC(I,) and f**+)) ¢
BV (1), then for alln sufficiently large

(2.2) 1Snp(fs2) = Fllp, o
e o U, 0 W]}

Proof. First letp > 1. By the hypothesis, for all € [0, ) andx € I, we have

2k+1 () " '
Sualfi) = fla) = 2 : 2'( S,4((t = 2}, 2)
b S0 [ (=) ),

= El + EQ + Eg, say,

whereg(t) denotes the characteristic functionlgfand

Fita) = £ - 3 L)

=0

fO(x).

7!
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Applying Lemma2.2and Lemm&.3, we have

2k+1

||E1HLp(12) < Cyn~ "+ Z Hf(i)”Lp(Ig)

i=1
< Cyn~F+D {||fHLp(12) + Hf<2k+2)|’Lp(Ig)} :

Next we estimater,. Let H; be the Hardy Littlewood maximal function (]
of fk+2) on I, using Holder’s inequality and Lemn?al, we have

1 2k+1 ( ) Rate Of Convergence For A
2k+2 G IS Of
|E2’ - (Qk + 2 ! nk ( / |t ‘f <w)|dw ,:L‘) Durrrir:a?/rear Tyepqeueor::)(;erators
1 2k+1 / 2k+2 Niraj Kumar
< — t— )|d
(2k + 2) ( ®] £ ()| do
1 :
< S (60 |t = 2l | H (1) ) Title Page
B (zk N 2)' ' ¢( ) | $| | f( )| ' Contents
1 q(2k+2) p 1
< GhiD {Sue (o)1t — 2| )} {Su (00 |HA(1)F )} <« | »
k b1 oo % < ’
< Cyn~ "+ (Z C(j. k) / (djn =) > Payno(@)payno(t) [Hy ()] dt) . o Back
Jj=0 a1 v=0
Next applying Fubini’s theorem, we have Close
Quit
1E2[IZ, 1)

Page 10 of 23

k by by 00
< CgnPk+1) Z C(j,k) / / (djn — C)Z P (L) P, (t) | Hp(t)|” dtd
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k b1
< Cen P+ Z ', k)/

(/ 2<djn - C)Zpdjn,v(x)pdjn,v(t)d:l;) ‘Hf(t>|pdt

v=0
_ _ p
< Con P | Hylly () < Cgn D || p2

Therefore
—(k+1 2k+2
HEQHLP(IQ) < Csn (k+1) ||f( i )HLP n)-

Fort € [0,00)\[a1, b1], « € I, there exists @ > 0 such thaft — x| > 4. Thus

By = Spy (F(t,2)(1 = 6(1)), 7))

k
< 5 (2k+2) Z C(j, k‘)den (\F(t,x)] (t _ x)2k+27$)

Jj=0

—(2k+2) Z C(j, k‘) [den (’f(t)‘ (t . x)2k+2,a§)

2k+1 ‘
Z Sd N <| _ x|2k+2+z 733)]

= E31 + E32, say.

Applying Holder’s inequality and Lemma 1, we have

k 1
- . 1 k a
] < 370 3 0GR (Sl )} {Sun(lt = 2" 1)}
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< Y UM SipllFOF D} 17t

Finally by Fubini’s theorem, we obtain
b
1E31 17, () = / | B3| da

< Oy Z C ]’ p(k+1)

b2
/ / i@y | (O dtda
< Cyon P+ Hinp[moo)

Again by Lemma2.3, we have

—(k+1 2k+2
Bsally i < Coon™ S LAl iy + 17242 )
Thus
—(k+1 2k+2
18301 1,1 < Coon™ D L £y + 17242 b

Combining the estimates @f,, E, F3, we get £.1).
Next suppose = 1. By the hypothesis, for almost all € I, and for all
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€ [0,00), we have

2k+1 45 " '
Sl frx) = flz) = fo)sn,k((t —z),x)

i=1
1

+ S0 [ (= w0

+ Spp(F(t, z)(1 = (1)), )
= M + My + Ms, say,

Rate Of Convergence For A
General Sequence Of

where)(t) denotes the characteristic functionlgfand Durrmeyer Type Operators
2k+1 ; .
(t — )’ (i) Niraj Kumar
Flt,a) = f(t) = Y (@)
=0
for almost allz € I, andt € [0, 00). Title Page
Applying Lemma2.2and Lemma&.3, we have Contents
IMillz, ) < Cyzn~ Y {||f||L1(12) + Hf(%H)HLl(IQ)} . 44 »»
Next, we have S /
| M| Go Back
2
e Close
< 1 | /b2 /b1 d ( ) (t) | |2k+1 Quit
) in — C n,v in,v
(2k + 1)! 1) CU.k pd z)pa,

Page 13 of 23
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For eachi;n there exists a non negative integet r(d;n) satisfying
7’(aljn)’1/2 < max(b; —ag, by —ay) < (r+ 1)(djn)’1/2.
Thus
z+(1+1)(djn)~1/2

b
M), 1y < %H,Doj, |Z/ {/ 8(1)(dym )

+(1)(djn)—1/2

x n)—1/2
z : 2k:+1 D) d (2k+1) dtd
. pdjn,v(x)pdjnv |t - ¢(w) ’ f (w)| tax
v=0

. - 2—()(djm) /2
L SNegw / / o(t)(dyn — )
(Zk + 1)! ]Z:; az z+(141)(djn)~1/2 ’

=0

X Zpdjn,v(l‘)pdjnﬂ](t) [t — x!2k+1}- (/ o(w) |df ) (w) ‘) dtdx.
v=0 a:f(l+1)(d]~n)*1/2

Suppose, . ,(w) denotes the characteristic function of the intefvat- ¢(d;n) /2,

z + s(d;n)~'/?], wherec, s are nonnegative integers. Then we have

1Mzl (1,
) 1/2

L ba +(141)( 2
= 2Er 1 (2]{3 + 1) j’ |Z/ {/ o ¢(t)(d]n) (djn _ c)
X Zpdjnvv(x)pdjn,v(t)l_‘l |t _ x|2k+5}

v=0
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z4+(1+1)(dyn) /2
X / P(W) Pz 0441 (W) [df P (w)| | dtda

—1/2

1 b2 - ,
(Qk - ) b Z/ {/x+(l+1 n)-1/2 (1) (d;n)(d;n = c).

x Z Datym0 ()P0 () [t — x\2k+5}

v=0

X (/ A ¢(w)¢x,l+1,0(’LU)‘df(2k+1)(w>‘) dide
—(l+1 n)—1/2

-1/2

bo a1+(d n
2k;—|—1 'Z\C j, k |/ {/ s o(t)(djn — c)
X Zpdjn,v(x)pdjn,v(t) |t — QJ‘%H}
v=0

a+(djn)~1/? o)
X d(w) Pz 11 (w) |df (w)| dtdzx

z—(d;jn)~1/2
x+(l+1)(djn)_1/2

1 k ' r » by
< G CeRIr [ {/ o(6)djn— )

2+(1) (djm) ~1/2

X Zpdjn,v(x)pdjn,v(t) |t - x‘2k+5}
v=0
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b1
X < Gz,0041(w) |df(2k+1)(w)|> dtdx

1

X Zpdjn,v<x)pdjn,v(t) ‘t - $‘2k+5}
v=0

b1
><< Gurr0(w) [df P (w )|> dtdx

1
1

+(2k:+ )

bo a1+dn
GO

X Zpdjn,v<x)pdjn,v(t) ‘t - $‘2k+1}
v=0

X < B D(w)de 1.1 (w) \df@k“)(w)\) dtdz.

z—(1)(djn)~1/?

ﬁz 97 |Zl4/ {/x-‘r(

¢(t)(djn = c)

1+1)(d;n)—1/2

—1/2

o(t)(djn — c)

Applying LemmaZ2.1 and using Fubini’s theorem we get

1Mzl (1)

k
< 0142 1C(J, k)|(

djn)

T

2k+41 b2
sy

=1

b1

1

Do (w) |dF D ()| dx}
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k b1
+ 0142 1C(J, k)| (djn) 74 Zl 4/ { P i+10(w) ’df(%ﬂ)(w” dx

j=0 “

by
[ i w) a0 )| d:c}

ai

k r b1 bo
< O Y10 k)|(dm) =" Z I { / ( ¢x,o,l+1<w>dx) ldf(z’“*”(w)l}
j=0 =1 ai a2
k %H bo Rate Of Convergence For A
+Cu Y [CGR) (i) Zl S st e seeeg
—0 as
b ’ Niraj Kumar
+ ¢$’171<w) ‘df@kﬂ)(w)’ d[)?}
" k T w Title Page
. _ 2k+1 _
<Cis Z \C(],k)](djn) 5 Zl ! / L dx ‘df@kﬂ)(w)’ Contents
=0 =1 w—(+1)(djn)" 2
_1 44 44
k ot o b1 wH(I+1)(djn)~ 2
+Cis)_|CG,K)I(dm)~ "= Y 17" / da | |df D (w)] < 4
7= ) B Go Back
b1 w(djn)” 2 Close
s |l w)
ay w—(d;n)” 2 Quit
—(k k
< Crgn~ "+ Hf(2 +1)HB V(1)

Page 17 of 23

Finally we estimatel/;. It is sufficient to choose the expression without the
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linear combinations. For all € [0,00)\[a1,b;] and allz € I, we choose a

9 > 0 such thatt — z| > 4. Thus

1Sn(F (8 2) (1 = &), )| 1, 1)

(
<[ [w-o ipn,vmpm(w F0)] (L~ 6(t))drr

2k+1 by
ay.

:M4+M5, S

For sufficiently large there exist positive constani§;, Cs such tha% >
Cyrforallt > Cg, t € 1. Applying Fubini’s theorem and Lemnfal, we ob-

tain

M, = ( / /+ [ ) / ) (1 — I (@panlt) [0 (1 — S(2))dtds

< Cron- 4D ( /0 ) dt>
(t — 2)2h+2

017 C20 Jaz = 0

< can e ([T 500 dt) n ( /C Cistorar) b

< Cyyn~ "+ 112 f0,00) -
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Finally by the Lemma&.3, we have

M5 S 022n_(k+1) {||fHL1(]2) + ||f(2k+1)HL1(IQ)} :

CombiningM,4 and M5, we obtain

M; < Cygn~*+1) {Hf“Ll[O,oo) + ||f(2k+1)HL1(12)} :

This completes the proof o2(2) of the lemma.
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Theorem 3.1.Let f € L,[0,00),p > 1. Then forn sufficiently large

||Sn7k(f7 ) - f||Lp(12) S 024 {w2k+2(fa n_1/27p7 ]1) + n_(k+1) ||f||LP[O,oo)} )

where(Csy, is a constant independent gfandn.

Proof. We can write

Rate Of Convergence For A

G IS Of
104 (F,%) = fll 1, Durmmeyer Type Operators

< [Snn(f = fo2nt2, *)||Lp(12) Niraj Kumar
S w (o 2wrz: %) = Fagre2)ll ) + 1 Unonre =PI
=F + Es + Ej, say. Title Page
It is well known that G s
[ I ] PR
B.V.(I3) Li(I3) | 4
Therefore from Lemma.4 (p > 1) and(p = 1) we have Go Back
Close
Ey < Cosn~ T (Hf?g’QQkka)HLp(Ig) + ||fn,2k+2||Lp[0,oo)) Quit
< Cyen~FHD (ni(k+2)CU2k+2(f, np11) + HfHLp[O,oo)> : Page 20 of 23
which follows from the properties of Steklov means. 3. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004
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Let ¢(¢) be the characteristic function &f, we have

Sn((f - fn,2k+2)(t)v .%)
= Sn(@W)(f = fo2kr2) (1), 2) + Sn((1 = 6(0)(f — frant2)(t), 7)
= Ey + Es, say.

By Hdlder’s inequality

b bo b1 0
/ |E4|pd$ < / / (TL - C) anﬂ) (x)pn,v(t) |<f - fn,2k+2)<t>|p dtdx.
az az ay v=0

Applying Fubini’s theorem, we have

ba
/ |EalPdz < ||f = frorsell ooy -

az

Similarly, forallp > 1

15, < Corn™ "D f = fransall oo

Lp(I2) —

Consequently, via the property of Steklov means, we find that

1S (f = [, 2k +2,)|| ey < Cos {w2k+2 (f,m.p, L) +n~*Y ||f||Lp[O,oo)} :

Hence
Ey < Cy {w2k+2 (f.nop, L) + 0~ *FY HfHLp[O,oo)} :

Thus, with = n='/2, the result follows.
This completes the proof of the theorem. O
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