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ABSTRACT. The main purpose of this note is to characterize the operatarker A4 5 N C4
which are orthogonal to the range of elementary operators, wh&@ot a smooth point id"
by using thep—directional derivative.
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1. INTRODUCTION

Let £ be a complex Banach space. We first define orthogonality. ilVe say that € FE is
orthogonal tax € F if for all complex\ there holds

(1.1) la + Abll = lall -

This definition has a natural geometric interpretation. Nandely, if and only if the complex
line {a + Ab | A € C} is disjoint with the open balk (0, ||«||), i.e, if and only if this complex
line is a tangent one

Note that ifb is orthogonal taz, thena need not be orthogonal to If E is a Hilbert space,
then from (1.1) follows(a, b) = 0, i.e, orthogonality in the usual sense. This notion and first
results concerning the orthogonality in linear metric space was given by G. Birkhoff [2].

Next we define the von Neumann-Schatten clagsef < p < o0). Let B(H) denote the
algebra of all bounded linear operators on a complex separable and infinite dimensional Hilbert
spaceH and letT’ € B(H) be compact, and let; (X) > so(X) > --- > 0 denote the singular
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2 SALAH MECHERI AND MESSAOUDBOUNKHEL

values ofT’, i.e., the eigenvalues df’| = (T*T)% arranged in their decreasing order. The
operator! is said to belong to the Schattgrclasseg’, if

17|, = [Z s;(T)"

P
Jj=1

—[tr(Ty]r, 1<p<oo,

wheretr denotes the trace functional. HenCg is the trace clasg); is the Hilbert-Schmidt
class, and’,, is the class of compact operators with
I7]l.e = 5:(T) = sup | Tf]
IFl1=1
denoting the usual operator norm. For the general theory of the Schatttasses the reader
is referred tol[18].
Recall that the nornjj-|| of the B-spaceV’ is said to be Gateaux differentiable at non-zero
elementse € V if e+ 191l — [zl
. Tz +ty|| — ||T
Jim, = = Re D.(y)
for all y € V. HereR denotes the set of all realB¢ denotes the real part ard, is the unique
support functional (in the dual spa®€) such that|D,|| = 1 andD,(x) = ||z||. The Gateaux
differentiability of the norm at: implies thatz is a smooth point of the sphere of radius|. It
is well known (see[[7] and references therein) thatlfor p < oo, C, is a uniformly convex
Banach space. Therefore every non-ZEra C), is a smooth point and in this case the support
functional of T" is given by

TP 'UXx*
Dr(X) =tr Hﬁ
1Tl

forall X € C, (1 < p < o0), whereT' = U |T| is the polar decomposition df.
In [1] Anderson proved that ifl is a normal operator on Hilbert spaég then AS = SA
implies that for all bounded linear operat&rthere holds

(12) IS+ AX — XAl > |IS].

This means that the range of the derivatign B(H) — B(H) defined byy4(X) = AX - XA
is orthogonal to its kernel. This result has been generalized in two directions, by extending the
class of elementary mappings

E:B(H)— B(H); E(X) = iAiXBi

and .
E:B(H)— B(H);E(X) =Y AXB; - X,

=1
where (Ay, Ay, ..., A,), (B, Bs, ..., B,) aren—tuples of bounded operators dih and by
extending the inequality (1.2) 10,-classes with < p < oo, seel[3], [7], [10] and([11].

The Gateaux derivative concept was used_ In [4], [5], [6], [8], [9] and [15] and, in order to
characterize those operators for which the range of a derivation is orthogonal. In these papers,
the attention was directed @,-classes for somg > 1.

The main purpose of this note is to characterize the operaters”; which are orthogonal
to the range of elementary operators, whéres not a smooth point irt”; by using they-
directional derivative.

Recall that the operatdt is a smooth point of the corresponding spheré’jnif and only if
eitherS is injective orS* is injective.
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It is very interesting to point out that this result has been dorg,nlasses with < p < oo
but, at least to our acknowledge, it was not given, till now,dp+classes.
It is well known see ([B]) that the norm-|| of the B-spaceV is said to bep-directional
differentiable at non-zero elementsc V if
|z + ety — |z
1 =
21, t Daw)
for all y € V. Therefore for every non-zefb € ' which is not a smooth point, the support
functional of T is given by
Dyr(S) = Re{e*tr(U"Y)} +[|QY P, ,

for all X € C;, whereS = U |S| is the polar decomposition of, P = P, x, Q = Qxer x+-

2. MAIN RESULTS

Let ¢ : B(H) — B(H) be a linear map, that igy(aX + 8Y) = a¢(X) + Bo(Y), for all
a, 3, X, Y, and satisfying the following condition:
tr(Xo(Y)) =tr(p(X)Y), forall X, Y € C;.
Let S € C; and put
U={X e B(H): ¢(X)e(Ci}.
Lety : U — C defined by
(X) = 5+ ¢(X).
Theorem 2.1.[12] LetV € C;. Then,
15+ o(X)lley, = [[9(S)le,, forall X e ¢,
if and only ifU* € ker ¢, wherey (V') = Ul (V).
As a first consequence of this result we have the following theorem.
Theorem 2.2.Let S € () Nker ¢. The following assertions are equivalent:
1)
1S + o(X)|le, = ||S]|e,, forall X e Cf,
(2) U* € ker ¢, whereS = U|S)|.
Our main purpose in this paper is to use the general result in Théorém 2.1 in order to char-

acterize all those operatofse C, N ker ¢ which are orthogonal t&an(¢ | C1) (the range of
¢ | C1) wheng is one of the following elementary operators:

(1) Eap : B(H) — B(H) defined by

Eap(X) =) AXBi - X,
=1
whereA = (A, As, ..., A,) andB = (By, Ba, ..., B,) aren-tuples of operators in
B(H).
(2) Ay p: B(H) — B(H) defined by

Anp(X)=AXB - X,

whereA and B are operators i3 (H ).
(3) da5: B(H) — B(H) is defined by

Sap(X)=AX — XB,
whereA and B are operators i3 (H ).
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(4) Eap: B(H) — B(H) is defined by
Eap(X) =) AXB
=1

whereAd = (A, Ay, ..., A,) andB = (By, Bs, ..., B,,) aren -tuples of operators in
B(H).
Note that all the elementary operators recalled above satisfy the assumptions assumed on our
abstract general mafa
Let us begin by proving our main results for the elementary opefator
Theorem 2.3.Let A = (Ay, As,..., A,), B = (B, Bs, ..., B,) ben-tuples of operators in
B(H) such that
ker Ey g|Cy C ker Eg- g

C].
Assume that

(2.1) ﬁ:AiA; <1, zn:A;‘Ai <1, zn:BiB;‘ < land Zn:BjBi <1
=1 =1 =1 =1

andletS = U |S| € C,. ThenS € ker E4 g if, and only if,
1S+ Eap(X)ll, = IS

forall X € C;.
Proof. Let S € ker E4 5|C;. Then it follows from Theorer 2|1 that
(2.2) 1S+ Eas(X)ll, = 15,

forall X € C;ifand only if U* € ker E4 5. The hypothesiger E4 5 C ker Ey4- g+, implies
thatU* € ker E4« p-. Note thatU* € ker E4 g C ker E4- g« if and only if

(2.3) tT(U*EA7B(X)) - 0 - tT(U*EA*’B* (X))

ChoosingX € C, to be the rank one operators y it follows from (2.3) that if [2.2) holds then

=tr <(i:B,-U*Ai - U*) (x®y)>

= (Z BiU*Aix,y) — (U*z,y) =0

=1

and
<Z BE‘U*A?:v,y) — (Urz,y) =
=1

forall x,y € H or

Esp(U) =0= E4 p-(U).
Itis known thatify " | B;B; <1, > " BiB; < landEpp(S) = 0 = Ef 5(5), then the
eigenspaces corresponding to distinct non-zero eigenvalues of the compact positive operator

|S|” reduces eact®; see ([3, Theorem 8] [15, Lemma 2.3]). In particuldt commutes with
eachB; for all 1 < i < n. Hence[(2.R) holds if and only if,
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Now, we prove a similar result for the operatti; 5. Note that in this case we don’t need
the condition|[(Z.]1).

Theorem 2.4.Let A and B be two operators irB(H) such that
ker Ay g|Cy C ker Ay p+|Ch
and assume tha = U |S| € C. ThenS € ker A, 5|Cy if and only if,
(2.4) 15+ Aas(X)ll; = (1515,
forall X € (.
Proof. Let S € ker A, 5|Cy. Then it follows from Theore.l that
1S+ Aas(X)[, = (15,

forall X € C; if and only if U* € ker A, 5. By the same arguments as in the proof of the
above theorem, it follows thdt (2.4) holds if and only if

AUB=U=A"UB* or B'U"A*=U"= BU"A.
Multiplying at right by |S| we get
(2.5) AUB|S| = U|S| = A*UB*|S)|.
Now assS € ker Ay p|Cy C ker Ay« g=|Ch, i.e.,

ASB=S=A*SB*A or B*S*A*= 5" = BS*A,

then

BS*S = BS*ASB = S*SB, i.e.,B|S| = |S|B.
We also getd|S| = |S|A, that is, both operatord and B commute with|S|. Thus, [2.5) is
equivalent to

AU|S|B =U|S| = A"U|S|B*, ie,ASB=S=A"SB".
ThusS € ker Ay p. O

Remark 2.5. The above theorem is still true if we consider instead\of; the generalized
derivationd 4 5(X) = AX — X B. Itis still possible to characterize the operatsrs ker ¢4 5N

C: which are orthogonal t&an (¢4 5), wherep, g = AXB + CXD. In [13] Shulman stated
that there exists a normally represented elementary operator of theMdtmA; X B; with

n > 2 such that as€ > 1, i.e. the range and the kernel have non trival intersection. Hence
Theore does not hold in the case whergs is replaced by)s p = > ;" ; A, X B;

Corollary 2.6. Let A, B be normal operators il3(H) and letS = U |S| € C;. ThenS €
ker A4 g, if and only if,
15+ Aa (Xl = [I5]];

forall X e C;.
Proof. If A, B are normal operators the Putnam-Fuglede theorem ensurekethat, 5 C
ker A% p O

Corollary 2.7. Let A, B in B(H) be contractions and le¥ = U |S| € C;. ThenS € ker A 4 g,
if and only if,
1S+ Aas(X)l, 2 (IS,

forall X € C;.
Proof. It is known [14, Theorem 2.2] that il and B are contractions and € (1, then
ker Ay p C ker A"A,B and the result holds by the above theorem. O
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Remark 2.8. The above corollaries still hold true when we consiélef instead ofA 4 5.
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