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1. Introduction

There are many classical and newer theorems pertaining to the integrability of formal
sine and cosine series

g(x) = Z Ap sinnz,
n=1

and

f(x) = i An COST.
n=1

As a nice example, we recall Chen'd]jtheorem:If \,, | 0, thenz™Vp(z) € LP
(o means eithelf or g),p > 1, 1/p—1 < v < 1/p, if and only if > nP1P=2)\p <
.

For notions and notations, please, consult the third section.

We do not recall more theorems because a nice short survey of recent results with
references can be found in a recent paper of S. Tikhodpwahd classical results
can be found in the outstanding monograph of R.P. Boasg]Jr. [

The generalizations of the classical theorems have been obtained in two main
directions: to weaken the classical monotonicity condition on the coefficignts
replace the classical power weigktby a more general one in the integrals. Lately,
some authors have used both generalizations simultaneously.

J. Németh §] studied the class aRBV S sequences and weight functions more
general than the power one in thé€0, ) space.

S. Tikhonov B] also proved two general theorems of this type, but infthespace
for p > 1; he also used general weights.

Recently D.S. Yu, P. Zhou and S.P. Zhd&} &nswered an old problem of Boas
([2], Question 6.12.) in connection witk? integrability considering weight”, but
only under the condition that the sequer{ce,} belongs to the clas3/V BV'S;
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their result is the best one among the answers given earlier for special classes of
sequences. The original problem concerns nonnegative coefficients.

In the present paper we refer back to an old paper of B8lasvhich was one of
the first to study th&.P-integrability withnonnegative coefficients and weight

We also intend to prove theorems witlonnegative coefficientbut with more
general weights tham”.

It can be said that our theorems are the generalizations of Theorems 8 and 9
presented in Boas’ paper mentioned above. Boas names these theorems as slight
improvements of results of Askey and Waingg}. [Our theorems jointly generalize
these by using more general weights thanand broaden those to the case- 1,
as well.

Comparing our results with those of Tikhonov, as our generalization concerns the
coefficients, we omit the conditiof\,} € RBVS and prove the equivalence of
(2.2 and @.3).

In proving our theorems we need to generalize an equivalence statement of Boas
[3]. At this step we utilize the quagi-power-monotone sequences.
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2. New Results

We shall prove the following theorems.

Theorem 2.1.Let1 < p < oo and X := {\,,} be a nonnegative null-sequence.
If the sequence := {,} is quasis-power-monotone increasing with a certain
6 <p-—1,and

Integrability of Functions

(21) ’y(x)g(x) < Lp<07 7T>7 L. Leindler
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0 n p
(2.3) Z A2 (Z >\k> < 00. Page 5 of 22
=t =1 Go Back
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Theorem 2.2.Letp and )\ be defined as in Theoreml.

If the sequence is quasig-power-monotone increasing with a certain< p—1,
and

(2.5) (@) f(x) € LP(0, ),
then ¢.2) holds.
If the sequence is quasis-power-monotone decreasing with a certain> —1, Integrability of Functions

then @.4) implies @.5).
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3. Notions and Notations

We shall say that a sequenge= {~, } of positive terms igjuasij-power-monotone
increasing(decreasinyif there exist a natural numbe¥ := N (3, ) and a constant
K := K(B,v) = 1 such that

(3.2) Knﬁ’yn > mﬁfym (nﬁ’yn < Kmﬁ’ym)

holds for anyn =2 m = N.

If (3.1) holds with = 0, then we omit the attributeg-power" and use the
symbolsT (]).

We shall also use the notatiols< R at inequalities if there exists a positive
constantX” such that, < KR.

A null-sequence := {c¢,} (¢, — 0) of positive numbers satisfying the inequali-
ties

Z |Ac,| £ K(c)em, (Ac, :=c¢p—cpy1), meEN,
with a constantk’(c) > 0 is said to be asequence of rest bounded variatjan
symbolsc € RBV'S.
A nonnegative sequeneds said to be anean value bounded variation sequence
in symbolsc € MV BV S, if there exist a constant’(c) > 0 and a\ = 2 such that

2n (An]
Z |Ack| £ K(c)n™! Z ¢k, neEN,
k=n k=[A"1n]

where[a] denotes the integral part of
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In this paper a sequenee:= {~,,} and a real number = 1 are associated to a
functiony(z) (= 7,(z)), being defined in the following way:

v <%> =AY neN; and K;(7)y, < () £ Ko()m

holds for allz € (25, .
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4. Lemmas

To prove our theorems we recall one known result and generalize one of Boas’ lem-

mas (R, Lemma 6.18]).
Lemma4.1 (B]). Letp = 1, a,, 2 0@andg, > 0. Then

(4.1) > b (Z ak> <Py B (Z @) al,
n=1 k=1 n=1 k=n

and
(4.2) > b (Z ak) <Py BT (Z m) ab.
n=1 k=n n=1 k=1

Lemma4.2.1fb, =20, p=1, s > 0, then

(4.3) Zl = b (Z bk) < 00
n=1 k=n

implies

(4.4) 22 = Zﬂnn_SP (Z ksbk) < 00
n=1 k=1

if n93, | with a certaind > 1 — sp; and ifn°3, 1 with a certaind < 1, then {¢.4)

implies ¢.3).

Thus, if both monotonicity conditions @6, } hold, then the conditions!(3) and

(4.4) are equivalent.

Integrability of Functions
L. Leindler
vol. 9, iss. 3, art. 69, 2008

Title Page
Contents
44 44
< >
Page 9 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au

Proof of Lemmal.2. First, suppose4( 3) holds. Write

T, = ;o bi;
k=n
then

>, =D Ban? (Z k(T TkH)) .
n=1 k=1

By partial summation we obtain

0 n p
22 < s ; Ban~°P (; k31Tk> =: 23 .

Sincen’3, | with § > 1 — sp, Lemma4.1with (4.1) shows that

Yo, €Y (T TP (Ban ) (Z ﬁkksp>
n=1 k=n
<Y BIE=) .
n=1

this proves that4.3) = (4.4).
Now suppose thati(4) holds. First we show that

(4.5) an < 0.
n=1
Denote .
H, = Z k*by..
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Then

N-1
(4.6) Zbk_Zkz (Hy— Hyp1) 8y kT 'Hy + HyN ™.
k=n k=n k=n
If p > 1 then by Holder’s inequality, we obtain
N-1 11 N-1 % N-1 pr%l
@7) Y kU < (Z Hiﬁkk—sp> (Z e U ”)
k=n k=n k=n

Since,n’3, 1T with § < 1, thus

ik PB 5+5 1/(p—1) <<Zk—
k=1

This, (@.4) and @.7) imply that

oﬂ

(4.8) > kTUH, < o0,
thus Hy N ~* tends to zero, herewith, byt ©), (4.5) is verified, furthermore,

(@.9) S b < S kL
k=n k=n

_If p = 1, then without Hélder’s inequality, the assumptioh3, 1 with a certain
0 < 1 and ¢.4) clearly imply ¢.9).
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~ Thus we can apply4(9 and Lemmat.1with (4.2) for anyp = 1, whence, by
n3, 1T with 6 < 1, we obtain that

00 00 p 00 00 p
> (o) « 3o (L)
n=1 k=n n=1 k=n

(S) n p
< Z(nisilHn)pﬂiip (Z ﬁk) Integrability of Functions

n=1

k=1 L. Leindler
* vol. 9, iss. 3, art. 69, 2008
<Y Bun THE;
n=1
. . Title Page
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5. Proof of the Theorems

Proof of Theoren?.1. First we prove that4.1) impliesg(z) € L(0,7) and @.2). If
p > 1, then, by Holder’s inequality, we get witht := p/(p — 1)

L

[ latwtas < ([ late |pdx) ([ wrra)”

Integrability of Functions

Denoter,, := Z, n € N. Sincey,n’ 1 (8 <p—1) L. Leindler
vol. 9, iss. 3, art. 69, 2008
/ ) dr < Z L/(1-) / dx
0 Tn+1 .
Title Page
- Zn 1/ (1=p) B/ (P—1) & 1, Contents
n=1
. 44 44
that is,g(z) € L.
If p =1, theny,n? T with someg3 < 0, thus~, T, whence < >
Page 13 of 22
/ lg(x |d:c<<z / x)|y(z d:z:<<—/ lg(z)|y(z)dx < 1.
Tn41 Go Back
Integratingg(x), we obtain Full Screen
x 0\ N\ nw Close
G(x) = tdt =y (1 - =2) Pgin? .
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Denote

- / g(2)|dz, neN.

nt1
Then
oo 2vtlp
Zk D= 0) kN
v=0 k=2"n
< ZG(?”Hn)
v=0
Y a
v=0 k=2v+1p
ovtly,
< Z I
1=2Vn k=9v+1lp
oo 2vtln 00
EYIS
v=0 i=2Yn k=i
(5.1) <> % > o
i=n k=i

Now we have

S =t (S <<znp 2, zk zgz
n=1 k=n
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Applying Lemma4.1with (4.2) we obtain that

-1 ) p—2 p—2
zl<<zl(n Zgz) ) (zk %)
Sincey,,n” T with 3 < p — 1, we have

(5.2) > kP <Y T <y

k=1 k=1

(nP~2y,)t (Z kP 2%) < pn® 2,

and thus

whence we get

) 00 p
n=1 i=n

Using again Lemmd.1 with (4.2) we have

n p
¥, S ()
k=1
A similar calculation and con3|derat|on as in4) give that

n

Z kP2 <

k=1

( 2p— 2 (Z k?p 2 k) <<,ynn3p—2’

and
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thus

539 DD SR
n=1
Since
oo o0 Tn p
S g = 3 ntr? ( / |g<x>|dx)
n=1 n=1 Tn+1
0 Tn Tn p_l
<X [ lgopac ([ ar)
n=1 Tnt1 Tn41

= [y (2)g (@) de.

This and £.3) prove the implication4.1) = (2.2).

Next we verify that £.4) implies 2.1). Letx € (2,41, z,]. Then, using the Abel

transformation and the well-known estimation

k
5 sin nx

n=1

D, (x) := <zt

we obtain

i A sin kx

(5.4)  g(x)| <z kAt
k=1 k=n+1

L k)\k+nZ|A)\k|-
k=1 k=n
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Denote .
Ay = |AN]
k=n

It is easy to see that
nl, < n 'y kA,
k=1
and, by\,, — 0,
A S A,
Thus, by £.4), we have
lg(z)| < n~! Z EA.
k=1
Hence

n P
[ st =3 [ piertopar St (Sa)
Tnt1 k=1

Applying Lemma4.1with (4.1), we obtain

0 P
/ [v(@)g(2)[Pdr < Z (RAL)P (™2 7P) 1P (Z vkk‘Q‘p>
k=n

Sincey,n” | with 3 > —1 — p, we have

> wkPEP P < > TR

k=n k=n

Integrability of Functions
L. Leindler
vol. 9, iss. 3, art. 69, 2008

Title Page
Contents
44 44
< >
Page 17 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au

and thus

00 P
(,ynn—2—p)1—p <Z ’719]{7_2_17) < ,ynn—2
k=n

Collecting these estimations we obtain

2 _ 2
/ |’Y ’pdl. < Zf}’n P AP Z"Y”np (Z |A)\k‘> Integrability of Functions

L. Leindler

herewith the implication4.4) = (2.1) is also proved.
In order to prove the equivalence of the conditioAs? and @.3), we apply
Lemma4.2 with
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_ _ Contents
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and integrating”'(x) we get

x >\n
Fi(x):= /0 F(t)dt =2 Z ) sin? n2_x
n=1

Thus we obtain

Denote N
" m
fom [ 1l men (r=T)
Then
0
< Z/ (/ |f(t)|dt) du
k=2n v Tkt1 \JO
<>t Z / =Y ng,
k= 2n Te+1 k= 2n l=k
thus on

<<”Z k2sz

k=n k=2n
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Using the estimation obtained above we have

o) 2l/+1
k=3 3k
v=0 k=2n
SPRED WS W
v=0 k=2v+ln Integrability of Functions
0o  2i2p L. Leindler
< Z 2ynz Z k2 Z fo vol. 9, iss. 3, art. 69, 2008
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< Z 2"n 2(2;)_1 Z fo Title Page
v=0 i=v (=2"*1n Contents
< (@2n)! Z fo (Z 2n ) « 3
z‘ozoo _ (=2i+1p < >
< Z Z fé- Page 20 of 22
i=0 (=2it+1p
) Go Back
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Full Screen
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The proof of the statement (4) = (2.5) is easier. Namely

|<Z)\k+ Z A\ cos kx <<Z)\k+ Z|A)\k

k=n+1
Using the notations of Theoret1and assuming € (1, x,], we obtain

Tn n p 0o p
| h@f@pds <y <Z Ak> + ™ (” 2. |Axkl>
k=1 k=n

Tn+1

and thus, by, — 0,

(5.6) / (@) f (2)Pda
n oo p 00 ) p
€30t (N3 ) + Xt (o)
n=1 n=1 k=n

k=1 m=k

To estimate the first sum, we again use Lemhiawith (4.1), thus, by, n® | with
somes > —1,

00 n p 00 50 p
Z A2 (Z Ak> < Z AP (yn~ 2P (Z %k”)
n=1 k=1 k=n

n=1

oo o0 fe'e) p
€S AL = Y (z |mk|)
n=1 n=1 k=n

This and £.6) imply the second assertion of Theorem, that is, ¢.4) = (2.5).
We have completed our proof. O
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