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Abstract: The goal of the present paper is to generalize two theorems of R.P. Boas Jr. per-
taining toLp (p > 1) integrability of Fourier series with nonnegative coefficients
and weightxγ . In our improvement the weightxγ is replaced by a more general
one, and the casep = 1 is also yielded. We also generalize an equivalence
statement of Boas utilizing power-monotone sequences instead of{nγ}.

http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
mailto:sever.dragomir@vu.edu.au


Integrability of Functions

L. Leindler

vol. 9, iss. 3, art. 69, 2008

Title Page

Contents

JJ II

J I

Page 2 of 22

Go Back

Full Screen

Close

Contents

1 Introduction 3

2 New Results 5

3 Notions and Notations 7

4 Lemmas 9

5 Proof of the Theorems 13

http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au


Integrability of Functions

L. Leindler

vol. 9, iss. 3, art. 69, 2008

Title Page

Contents

JJ II

J I

Page 3 of 22

Go Back

Full Screen

Close

1. Introduction

There are many classical and newer theorems pertaining to the integrability of formal
sine and cosine series

g(x) :=
∞∑

n=1

λn sin nx,

and

f(x) :=
∞∑

n=1

λn cos nx.

As a nice example, we recall Chen’s ([4]) theorem:If λn ↓ 0, thenx−γϕ(x) ∈ Lp

(ϕ means eitherf or g), p > 1, 1/p− 1 < γ < 1/p, if and only if
∑

npγ+p−2λp
n <

∞.
For notions and notations, please, consult the third section.
We do not recall more theorems because a nice short survey of recent results with

references can be found in a recent paper of S. Tikhonov [7], and classical results
can be found in the outstanding monograph of R.P. Boas, Jr. [2].

The generalizations of the classical theorems have been obtained in two main
directions: to weaken the classical monotonicity condition on the coefficientsλn; to
replace the classical power weightxγ by a more general one in the integrals. Lately,
some authors have used both generalizations simultaneously.

J. Németh [6] studied the class ofRBV S sequences and weight functions more
general than the power one in theL(0, π) space.

S. Tikhonov [8] also proved two general theorems of this type, but in theLp-space
for p = 1; he also used general weights.

Recently D.S. Yu, P. Zhou and S.P. Zhou [9] answered an old problem of Boas
([2], Question 6.12.) in connection withLp integrability considering weightxγ, but
only under the condition that the sequence{λn} belongs to the classMV BV S;
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their result is the best one among the answers given earlier for special classes of
sequences. The original problem concerns nonnegative coefficients.

In the present paper we refer back to an old paper of Boas [3], which was one of
the first to study theLp-integrability withnonnegative coefficients and weightxγ.

We also intend to prove theorems withnonnegative coefficients,but with more
general weights thanxγ.

It can be said that our theorems are the generalizations of Theorems 8 and 9
presented in Boas’ paper mentioned above. Boas names these theorems as slight
improvements of results of Askey and Wainger [1]. Our theorems jointly generalize
these by using more general weights thanxγ, and broaden those to the casep = 1,
as well.

Comparing our results with those of Tikhonov, as our generalization concerns the
coefficients, we omit the condition{λn} ∈ RBV S and prove the equivalence of
(2.2) and (2.3).

In proving our theorems we need to generalize an equivalence statement of Boas
[3]. At this step we utilize the quasiβ-power-monotone sequences.
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2. New Results

We shall prove the following theorems.

Theorem 2.1.Let1 5 p < ∞ andλ := {λn} be a nonnegative null-sequence.
If the sequenceγ := {γn} is quasiβ-power-monotone increasing with a certain

β < p− 1, and

(2.1) γ(x)g(x) ∈ Lp(0, π),

then

(2.2)
∞∑

n=1

γnn
p−2

(
∞∑

k=n

k−1λk

)p

< ∞.

If γ is also quasiβ-power-monotone decreasing with a certainβ > −1, then condi-
tion (2.2) is equivalent to

(2.3)
∞∑

n=1

γnn
−2

(
n∑

k=1

λk

)p

< ∞.

If the sequenceγ is quasiβ-power-monotone decreasing with a certainβ > −1−p,
and

(2.4)
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

< ∞,

then (2.1) holds.
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Theorem 2.2.Letp andλ be defined as in Theorem2.1.
If the sequenceγ is quasiβ-power-monotone increasing with a certainβ < p−1,

and

(2.5) γ(x)f(x) ∈ Lp(0, π),

then (2.2) holds.
If the sequenceγ is quasiβ-power-monotone decreasing with a certainβ > −1,

then (2.4) implies (2.5).
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3. Notions and Notations

We shall say that a sequenceγ := {γn} of positive terms isquasiβ-power-monotone
increasing(decreasing) if there exist a natural numberN := N(β, γ) and a constant
K := K(β, γ) = 1 such that

(3.1) Knβγn = mβγm (nβγn 5 Kmβγm)

holds for anyn = m = N.
If (3.1) holds with β = 0, then we omit the attribute "β-power" and use the

symbols↑ (↓).
We shall also use the notationsL � R at inequalities if there exists a positive

constantK such thatL 5 KR.
A null-sequencec := {cn} (cn → 0) of positive numbers satisfying the inequali-

ties
∞∑

n=m

|∆cn| 5 K(c)cm, (∆cn := cn − cn+1), m ∈ N,

with a constantK(c) > 0 is said to be asequence of rest bounded variation, in
symbols,c ∈ RBV S.

A nonnegative sequencec is said to be amean value bounded variation sequence,
in symbols,c ∈ MV BV S, if there exist a constantK(c) > 0 and aλ = 2 such that

2n∑
k=n

|∆ck| 5 K(c)n−1

[λn]∑
k=[λ−1n]

ck, n ∈ N,

where[α] denotes the integral part ofα.
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In this paper a sequenceγ := {γn} and a real numberp = 1 are associated to a
functionγ(x) (= γp(x)), being defined in the following way:

γ
(π

n

)
:= γ1/p

n , n ∈ N; and K1(γ)γn 5 γ(x) 5 K2(γ)γn

holds for allx ∈
(

π
n+1

, π
n

]
.
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4. Lemmas

To prove our theorems we recall one known result and generalize one of Boas’ lem-
mas ([2, Lemma 6.18]).

Lemma 4.1 ([5]). Letp = 1, αn = 0 andβn > 0. Then

(4.1)
∞∑

n=1

βn

(
n∑

k=1

αk

)p

5 pp

∞∑
n=1

β1−p
n

(
∞∑

k=n

βk

)p

αp
n,

and

(4.2)
∞∑

n=1

βn

(
∞∑

k=n

αk

)p

5 pp

∞∑
n=1

β1−p
n

(
n∑

k=1

βk

)p

αp
n.

Lemma 4.2. If bn = 0, p = 1, s > 0, then

(4.3)
∑

1
:=

∞∑
n=1

βn

(
∞∑

k=n

bk

)p

< ∞

implies

(4.4)
∑

2
:=

∞∑
n=1

βnn
−sp

(
n∑

k=1

ksbk

)p

< ∞

if nδβn ↓ with a certainδ > 1 − sp; and if nδβn ↑ with a certainδ < 1, then (4.4)
implies (4.3).

Thus, if both monotonicity conditions for{βn} hold, then the conditions (4.3) and
(4.4) are equivalent.
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Proof of Lemma4.2. First, suppose (4.3) holds. Write

Tn :=
∞∑

k=n

bk;

then ∑
2

=
∞∑

n=1

βnn
−sp

(
n∑

k=1

ks(Tk − Tk+1)

)p

.

By partial summation we obtain∑
2
� sp

∞∑
n=1

βnn
−sp

(
n∑

k=1

ks−1Tk

)p

=:
∑

3
.

Sincenδβn ↓ with δ > 1− sp, Lemma4.1with (4.1) shows that∑
3
�

∞∑
n=1

(ns−1Tn)p(βnn
−sp)1−p

(
∞∑

k=n

βkk
−sp

)p

�
∞∑

n=1

βnT
p
n =

∑
1
,

this proves that (4.3)⇒ (4.4).
Now suppose that (4.4) holds. First we show that

(4.5)
∞∑

n=1

bn < ∞.

Denote

Hn :=
n∑

k=1

ksbk.
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Then

(4.6)
N∑

k=n

bk =
N∑

k=n

k−s(Hk −Hk−1) 5 s
N−1∑
k=n

k−s−1Hk + HNN−s.

If p > 1 then by Hölder’s inequality, we obtain

(4.7)
N−1∑
k=n

k−s−1Hkβ
1
p
− 1

p

k 5

(
N−1∑
k=n

Hp
kβkk

−sp

) 1
p
(

N−1∑
k=n

(k−1β
−1/p
k )p/(p−1)

) p−1
p

.

Since,nδβn ↑ with δ < 1, thus

∞∑
k=1

(k−pβ−1
k k−δ+δ)1/(p−1) �

∞∑
k=1

k
δ−p
p−1 < ∞.

This, (4.4) and (4.7) imply that

(4.8)
∞∑

k=1

k−s−1Hk < ∞,

thusHNN−s tends to zero, herewith, by (4.6), (4.5) is verified, furthermore,

(4.9)
∞∑

k=n

bk �
∞∑

k=n

k−s−1Hk.

If p = 1, then without Hölder’s inequality, the assumptionnδβn ↑ with a certain
δ < 1 and (4.4) clearly imply (4.8).
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Thus we can apply (4.9) and Lemma4.1 with (4.2) for anyp = 1, whence, by
nδβn ↑ with δ < 1, we obtain that

∞∑
n=1

βn

(
∞∑

k=n

bk

)p

�
∞∑

n=1

βn

(
∞∑

k=n

k−s−1Hk

)p

�
∞∑

n=1

(n−s−1Hn)pβ1−p
n

(
n∑

k=1

βk

)p

�
∞∑

n=1

βnn
−spHp

n;

herewith (4.4)⇒ (4.3) is also proved.
The proof of Lemma4.2 is complete.
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5. Proof of the Theorems

Proof of Theorem2.1. First we prove that (2.1) impliesg(x) ∈ L(0, π) and (2.2). If
p > 1, then, by Hölder’s inequality, we get withp′ := p/(p− 1)∫ π

0

|g(x)|dx 5

(∫ π

0

|g(x)γ(x)|pdx

) 1
p
(∫ π

0

γ(x)−p′dx

) 1
p′

.

Denotexn := π
n
, n ∈ N. Sinceγnn

β ↑ (β < p− 1)∫ π

0

γ(x)−p′dx �
∞∑

n=1

γ1/(1−p)
n

∫ xn

xn+1

dx

=
∞∑

n=1

n−2(γnn
β)1/(1−p)nβ/(p−1) � 1,

that is,g(x) ∈ L.
If p = 1, thenγnn

β ↑ with someβ < 0, thusγn ↑, whence∫ π

0

|g(x)|dx �
∞∑

n=1

1

γn

∫ xn

xn+1

|g(x)|γ(x)dx � 1

γ1

∫ π

0

|g(x)|γ(x)dx � 1.

Integratingg(x), we obtain

G(x) :=

∫ x

0

g(t)dt =
∞∑

n=1

λn

n
(1− cos nx) = 2

∞∑
n=1

λn

n
sin2 nx

2
.

Hence

G(x2k) �
2k∑

n=k

λn

n
.
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Denote

gn :=

∫ xn

xn+1

|g(x)|dx, n ∈ N.

Then

∞∑
k=n

k−1λk =
∞∑

ν=0

2ν+1n∑
k=2νn

k−1λk

�
∞∑

ν=0

G(2ν+1n)

�
∞∑

ν=0

∞∑
k=2ν+1n

gk

�
∞∑

ν=0

1

2ν+1n

2ν+1n∑
i=2νn

∞∑
k=2ν+1n

gk

�
∞∑

ν=0

2ν+1n∑
i=2νn

1

i

∞∑
k=i

gk

�
∞∑

i=n

1

i

∞∑
k=i

gk.(5.1)

Now we have∑
1

:=
∞∑

n=1

np−2γn

(
∞∑

k=n

k−1λk

)p

�
∞∑

n=1

np−2γn

(
∞∑

k=n

k−1

∞∑
i=k

gi

)p

.
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Applying Lemma4.1with (4.2) we obtain that∑
1
�

∞∑
n=1

(
n−1

∞∑
i=n

gi

)p

(np−2γn)1−p

(
n∑

k=1

kp−2γk

)p

.

Sinceγnn
β ↑ with β < p− 1, we have

(5.2)
n∑

k=1

γkk
βkp−2−β � γnn

β

n∑
k=1

kp−2−β � γnn
p−1,

and thus

(np−2γn)1−p

(
n∑

k=1

kp−2γk

)p

� γnn
2p−2,

whence we get ∑
1
�

∞∑
n=1

γnn
2p−2

(
n−1

∞∑
i=n

gi

)p

.

Using again Lemma4.1with (4.2) we have∑
1
�

∞∑
n=1

n−pgp
n(n2p−2γn)1−p

(
n∑

k=1

k2p−2γk

)p

.

A similar calculation and consideration as in (5.2) give that
n∑

k=1

k2p−2γk � γnn
2p−1,

and

(n2p−2γn)1−p

(
n∑

k=1

k2p−2γk

)p

� γnn
3p−2,
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thus

(5.3)
∑

1
�

∞∑
n=1

γnn
2p−2gp

n.

Since
∞∑

n=1

γnn
2p−2gp

n =
∞∑

n=1

γnn
2p−2

(∫ xn

xn+1

|g(x)|dx

)p

�
∞∑

n=1

γnn
2p−2

∫ xn

xn+1

|g(x)|pdx

(∫ xn

xn+1

dx

)p−1

�
∞∑

n=1

∫ xn

xn+1

|γ(x)g(x)|pdx

=

∫ π

0

|γ(x)g(x)|pdx.

This and (5.3) prove the implication (2.1)⇒ (2.2).
Next we verify that (2.4) implies (2.1). Let x ∈ (xn+1, xn]. Then, using the Abel

transformation and the well-known estimation

D̃n(x) :=

∣∣∣∣∣
k∑

n=1

sin nx

∣∣∣∣∣� x−1,

we obtain

(5.4) |g(x)| � x
n∑

k=1

kλk +

∣∣∣∣∣
∞∑

k=n+1

λk sin kx

∣∣∣∣∣� x

n∑
k=1

kλk + n

∞∑
k=n

|∆λk|.
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Denote

∆n :=
∞∑

k=n

|∆λk|.

It is easy to see that

n∆n � n−1

n∑
k=1

k∆k

and, byλn → 0,
λn 5 ∆n.

Thus, by (5.4), we have

|g(x)| � n−1

n∑
k=1

k∆k.

Hence∫ π

0

|γ(x)g(x)|pdx =
∞∑

n=1

∫ xn

xn+1

|γ(x)g(x)|pdx �
∞∑

n=1

γnn
−2−p

(
n∑

k=1

k∆k

)p

.

Applying Lemma4.1with (4.1), we obtain∫ π

0

|γ(x)g(x)|pdx �
∞∑

n=1

(n∆n)p(γnn
−2−p)1−p

(
∞∑

k=n

γkk
−2−p

)p

.

Sinceγnn
β ↓ with β > −1− p, we have

∞∑
k=n

γkk
βk−2−p−β � γnn

β

∞∑
k=n

k−2−p−β � γnn
−1−p,
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and thus

(γnn
−2−p)1−p

(
∞∑

k=n

γkk
−2−p

)p

� γnn
−2.

Collecting these estimations we obtain∫ π

0

|γ(x)g(x)|pdx �
∞∑

n=1

γnn
p−2∆p

n =
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

,

herewith the implication (2.4)⇒ (2.1) is also proved.
In order to prove the equivalence of the conditions (2.2) and (2.3), we apply

Lemma4.2with

s = 1, βn = γnn
p−2 and bk = k−1bk.

Then the assumptionsnδβn ↑ with δ < 1 andnδβn ↓ with δ > 1− p, determine the
following conditions pertaining toγn;

(5.5) nβγn ↑ with β < p− 1 and nβγn ↓ with β > −1.

The equivalence of (2.2) and (2.3) clearly holds if both monotonicity conditions
required in (5.5) hold.

This completes the proof of Theorem2.1.

Proof of Theorem2.2. As in the proof of Theorem2.1, first we prove that (2.5) im-
plies (2.2) andf(x) ∈ L. The proof off(x) ∈ L runs as that ofg(x) ∈ L in Theorem
2.1.

Integratingf(x), we obtain

F (x) :=

∫ x

0

f(t)dt =
∞∑

n=1

λn

n
sin nx,
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and integratingF (x) we get

F1(x) :=

∫ x

0

F (t)dt = 2
∞∑

n=1

λn

n2
sin2 nx

2
.

Thus we obtain

F1

( π

2k

)
�

2k∑
n=k

λn

n2
.

Denote

fn :=

∫ xn

xn+1

|f(x)|dx, n ∈ N,
(
xn =

π

n

)
.

Then

F1(x2n) =

∫ x2n

0

F (t)dt

�
∞∑

k=2n

∫ xk

xk+1

(∫ xk

0

|f(t)|dt

)
du

�
∞∑

k=2n

1

k2

∞∑
`=k

∫ x`

x`+1

|f(t)|dt =
∞∑

k=2n

1

k2

∞∑
`=k

f`,

thus
2n∑

k=n

λk

k
� n

∞∑
k=2n

1

k2

∞∑
`=k

f`.
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Using the estimation obtained above we have

∞∑
k=n

k−1λk =
∞∑

ν=0

2ν+1n∑
k=2νn

k−1λk

�
∞∑

ν=0

2νn
∞∑

k=2ν+1n

k−2

∞∑
`=k

f`

�
∞∑

ν=0

2νn

∞∑
i=ν

2i+2n∑
k=2i+1n

k−2

∞∑
`=2i+1n

f`

�
∞∑

ν=0

2νn

∞∑
i=ν

(2i
n)−1

∞∑
`=2i+1n

f`

�
∞∑
i=0

(2in)−1

∞∑
`=2i+1n

f`

(
i∑

ν=0

2νn

)

�
∞∑
i=0

∞∑
`=2i+1n

f`.

Hereafter, as in (5.1), we get that

∞∑
k=n

k−1λk �
∞∑

i=n

1

i

∞∑
`=i

f`,

and following the method used in the proof of Theorem2.1 with fn in place ofgn,
the implication (2.5)⇒ (2.2) can be proved.
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The proof of the statement (2.4)⇒ (2.5) is easier. Namely

|f(x)| 5
n∑

k=1

λk +

∣∣∣∣∣
∞∑

k=n+1

λk cos kx

∣∣∣∣∣�
n∑

k=1

λk +
1

x

∞∑
k=n

|∆λk|.

Using the notations of Theorem2.1and assumingx ∈ (xn+1, xn], we obtain∫ xn

xn+1

|γ(x)f(x)|pdx � γnn
−2

(
n∑

k=1

λk

)p

+ γnn
−2

(
n

∞∑
k=n

|∆λk|

)p

and thus, byλn → 0,

(5.6)
∫ π

0

|γ(x)f(x)|pdx

�
∞∑

n=1

γnn
−2

(
n∑

k=1

∞∑
m=k

|∆λm|

)p

+
∞∑

n=1

γnn
p−2

(
∞∑

k=n

∆λk

)p

.

To estimate the first sum, we again use Lemma4.1with (4.1), thus, byγnn
β ↓ with

someβ > −1,

∞∑
n=1

γnn
−2

(
n∑

k=1

∆k

)p

�
∞∑

n=1

∆p
n(γnn

−2)1−p

(
∞∑

k=n

γkk
−2

)p

�
∞∑

n=1

γnn
p−2∆p

n ≡
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

.

This and (5.6) imply the second assertion of Theorem2.2, that is, (2.4)⇒ (2.5).
We have completed our proof.
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