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Abstract

In this paper we establish new inequalities similar to the CebySev integral in-
equality involving functions and their derivatives via certain Trapezoidal like
rules.
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In 1882, P.L.éebyéev P] proved the following classical integral inequality (see
also [0, p. 207]):

1 2
(1.1) T (9l < 5 C=a) 1/l ll9 o
wheref, g : [a,b] — R are absolutely continuous functions, whose first deriva-
tives f/, g" are bounded and New Ceby3sev Type Inequalities
via Trapezoidal-like Rules
1 b
A2 T(f.9)= 5 [ F@g)ds 56 Pachpa
I I :
_ (m/ f(x) dx) (m/ g (x) dx), Title Page
¢ ¢ Contents
provided the integrals inl(2) exist. « b
The inequality {.1) has received considerable attention and a number of
papers have appeared in the literature which deal with various generalizations, < »
extensions and variants, sé¢+ [1(]. The aim of this paper is to establish new Go Back
inequalities similar to X.1) involving first and second order derivatives of the
functions f, g. The analysis used in the proofs is based on certain trapezoidal Close
like rules proved inZ, 3, 4]. Quit
Page 3 of 15

J. Ineq. Pure and Appl. Math. 7(1) Art. 31, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bgpachpatte@gmail.com
http://jipam.vu.edu.au/

In what followsR and’ denote respectively the set of real numbers and the
derivative of a function. Lefu, b] C R; a < b. We use the following notations

to simplify the detail of presentation. For suitable functigng, m : [a, b] — R,
and the constants, 5 € R, we set:
L(f;a,b)= 20 // (s)) (t — s) dtds,
B a New Ceby3sev Type Inequalities
via Trapezoidal-like Rules
Mfiab) = g / [ 076 0~ ms) aias, S—
1 .
N(f', f"a,b) = 20h—a) / (t—a) (0= t){[fa,b] = f (1)} dt, Title Page
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Contents
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po @0 (o)

and define

b ,
[fllo = sup_|f(£)] < oo, ||f\|p=(/ |f’(t)!pdt> < oo,

t€(a,b]

[f'; a,0],

for1 <p < 0.

Theorem 2.1.Let f, g : [a,b] — R be absolutely continuous functions @nb|

: I New Ceby3sev Type Inequalities
with f g € L2 [CL, b] ’ then’ via Trapezoidal-like Rules
1
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Theorem 2.2.Let f, g : [a,b] — R be differentiable functions so thdt, ¢’ are Quit
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2.1 2.2

From the hypotheses of Theoréirl, we have the following identities (seg, [

p. 654]):
(3.2) F——/f L(f;a,b),
1 b
(3.2) G — b—al g(t)dt =L (g;a,b).
Multiplying the left sides and rlght sides d3.() and (3.2) we get
(3.3) P(F,G. f,9)=L(f;a,b)L(g;a,b).
From 3.3) we have
(3.4) [P (F.G, f,9)| = |L(f;a,b)||L(g;a,b)|.

Using the Cauchy-Schwarz inequality for double integrals,

@5 Ll ot //|
[m / / (f’(t)—f’(S))Qr
Lo [ [ =]

(s)) (t — s)|dtds
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By simple computation,

(3.6) 20 _a // (s))? dtds

and
New Ceby3sev Type Inequalities

1 b b 9 (b — a)2 via Trapezoidal-like Rules
3.7 _— t—s) dtds = .
(3.7) 2(b—a)’ / / t=9) 12

B.G. Pachpatte

Using 3.6), (3.7)in (3.5),

Title Page
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3.9 L(g;a,b)| < — 45 = (lg;a,b
69 ILlen]< 2 [ 1 () o
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1 b
(3.11) B———

r— g(t)dtzM(g;a,b),

wherem(t) involved in the notation\/ (-; a, b) is given by

G Jt-a if ¢ e [a,2]
M=y i e ()

Multiplying the left sides and right sides d3.(L0) and 3.11), we get

(3.12) P(A,B,f,g) =M (f;a,b) M (g;a,b).
From (3.12),
(3.13) [P (A, B, f,9)| = M (f;a,0)[ M (g;a,D)].

Again using the Cauchy-Schwarz inequality for double integrals, we have,

M (Fra,b)] < ﬁ/b/bw (1) — () (m (1) — m ()] dids
S{ b—a // )dtdsr 1
(3.14) [ T / / )dtdsr
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By simple computation,

_a//

(3.15)

and

(3.16) 2(b—ia)2/ / (m (1) — m (5)) dtds
1

=i [y - (7 [

It is easy to observe that

/abm(t)dt:

1 - (b— a)2
b_a/am(t)dt— TR
Using (.19, (3.16 and the above observations 14 we get

and

1
2

b—a
2V/3

(3.17) M

(Fia.b)| < [—ufHQ (f:a,8])?
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Similarly ,

(3.18) M (g:a,b)| < 192\—/5 {bia 12 = (g ))?]

Using 3.17) and 3.18 in (3.13 we get @.2).

From the hypotheses of Theoreh®, we have the following identities (see

[1, p. 197)):
b —

319) = [ FOa—F =N e,
b

(3.20) bia/a g(t)dt —G=N(q,9":a,b).

Multiplying the left sides and right sides d3.(l9 and 3.20), we get

(3.21) P(F,G,f,g) = N(f,f"a,b)N (4, 9" a,b).
From (3.21),

(3.22) |P(F,G, f,9)| = IN(f f"5a,0)IN(g,9" a,)|.
By simple computation, we have,

N () € g [ =) 0= 05 = 1 Ol

<
~2(b—a)
(b—a)

(3.23) 1/ (@) = [/ a, 0]l

10 - 17508l [ (- a) 0o
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Similarly,

=D g 1) - I,

Using 3.23 and (3.24) in (3.22), we get the required inequality i2.Q).

(3.24) IN (¢, 9";a,b)| <
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In this section we present applications of the inequalities established in Theorem
2.1, to obtain results which are of independent interest.
Let X be a continuous random variable having the probability density func-

tion (p.d.f.)h : [a,b] C R — R, andFE (x f th(t)dt its expectation and
the cumulative density functiol : [a, b] [0,1], |e H (z f h(t
o € [a,b]. ThenH(a) = 0,H(b) = 1 and @O _ g, JPH (2 d:v
=b—F (X) New Ceby3ev Type Inequalities
Let f = g = h and choose inZ.1) H instead off andg and? instead ofF’ w A et E e Rk
andG . By simple computation, we have, B.G. Pachpatte
11 1 1 b— E(X)
P(QQHH) Z_b—a(b_E(X))[l_ﬁ}7 Title Page
. L : C
and the right hand side i2(1) is equal to ontents
1 44 44
5 (=) [[hl; 1], < >
and hence the following inequality holds: Eio 126
o - E(X)| 1 Close
- —EBX) |1 - ——2 < = [(bh— 2_1]. i
1 - B [1- 528 < S o= a1 Qu

Page 12 of 15
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Letg = f and choose inq.2) 1 instead off andg and_2; instead of4 and
B. By simple computation, we have,

P 2 2 1.1\ 2 logh — loga 2
a+ba+bx’x) \a+b b—a ’

(ol

1 2 N2
(o) -5
b—a 5 T 3a3b3

Using the above facts ir2(2), the following inequality holds:

2 logb—loga 2<(b—a)4
a+b b—a — 36a%b®
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