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Abstract

In this paper, we study the problem of geometric inequalities for the inscribed
simplex of an n-dimensional simplex. An inequality for the inscribed simplex of
a simplex is established. Applying it we get a generalization of n-dimensional
Euler inequality and an inequality for the pedal simplex of a simplex.
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Let 0,, be ann-dimensional simplex in thei-dimensional Euclidean space
E™, 'V denote the volume aof,,, R andr the circumradius and inradius of,,
respectively. Letd,, 4, ..., A, be the vertices o, a;; = |A4;A4;] (0 < i <

j <mn), F;denote the area of thth facef; = Ag--- A1 Ai11--- Ay (R —1)-
dimensional simplex) of,,, pointsO andG be the circumcenter and barycenter
of o, respectively. Foi = 0,1,...,n, let A, be an arbitrary interior point of
the ith face f; of 0,,. Then-dimensional simplex, = A{A]--- A’ is called
the inscribed simplex of the simplex,. Leta;; = |A]A%| (0 <i < j <n), R
denote the circumradius of,, P be an arbitrary interior point af,,, P; be the
orthogonal projection of the poirit on theith facef; of o,,. Then-dimensional
simplexo” = PyP, --- P, is called the pedal simplex of the poiftwith re-
spect to the simplex,, [1] — [7], let V" denote the volume of”, R” andr”
denote the circumradius and inradiuss(jf respectively. We note that the pedal
simplex ¢! is an inscribed simplex of the simplex,. Our main results are
following theorems.

Theorem 1.1. Leto], be an inscribed simplex of the simplex then we have
(1.1) (R’)2 (RQ o m2)n—1 > n2(n—1)r2n’

with equality if the simplex,, is regular ands’, is the tangent point simplex of
Op-

Let T; be the tangent point where the inscribed sphere of the simplex
touches théth facef; of o,,. The simplexs,, = T,T; - - - T}, is called the tangent
point simplex ofc,, [3]. If we take A, = T; (: = 0,1,...,n) in Theoreml.1,
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theno, anda, are the same an®t’ = r, we get a generalization of the
dimensional Euler inequality!] as follows.

Corollary 1.2. For ann-dimensional simplex,,, we have
(1.2) R%* > n*r? + mz,
with equality if the simplex,, is regular.

Inequality (L.2) improves the:-dimensional Euler inequalitys] as follows.

(1.3) R > nr.

Theorem 1.3. Let P be an interior point of the simplex,, and o], the pedal
simplex of the poinP with respect tar,,, then

(14) R//Rn—l Z n2n—1 (T/,)n 7

with equality if the simplex;,, is regular ands’ is the tangent point simplex of
On-
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To prove the theorems stated above, we need some lemmas as follows.

Lemma 2.1. Let o], be an inscribed simplex of thedimensional simplex,,,
then we have

(2.1) ( > (a;j)2> (ZFE) > n?(n+1)V?

0<i<j<n i=0

with equality if the simplex;,, is regular ando’, is the tangent point simplex of
On-

Proof. Let B be an interior point of the simplex,, and (Ao, A1,...,\,) the
barycentric coordinates of the poift with respect to coordinate simplesx,.
Here\;, = V;V'(i = 0,1,...,n), V; is the volume of the simplex, (i) =
BAy---Ai 1A - Ay and) ! A = 1. Let @ be an arbitrary point i£",
then

QB - > \QA.
=0

From this we have

STABL =Y (@ - GE) - 7.
1=0 =0

Inequalities for Inscribed
Simplex and Applications

Shiguo Yang and Silong Cheng

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 5 of 11

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:sxx@ahieedu.net.cn
mailto:
mailto:chenshilong2006@163.com
http://jipam.vu.edu.au/

(2.2)

I
>

Forj =0,1,...,n, taking@ = A; in (2.2) we get

n 2
(23) > (44))
=0
2 n 2
=% (BA4) + 5 A (BA) (G=0.1,....m).
1=0
Adding up these equalities i (3) and noting thaE;.‘ZO A =1, we get

o (A) = 2n (7).
1=0

0<i<j<n

(2.4)

For any real numbers; > 0 (i = 0,1,...,n) and an inscribed simplex, =
AGA, -+ Al of o, we take an interior poinB’ of o/, such that A, A\, ..., \)
is the barycentric coordinates of the pofsitwith respect to coordinate simplex
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ol , here\, = z; /Z;;O z; (i=0,1,...,n). Using equality 2.4) we have

S ) - 3o (7
=0

0<i<yi<n
i.e.
—\ 2
2.5 T Z : (B'A’») )
( ) Z v ZJ Z ‘ Z i ¢ Inequalities for Inscribed
0<i<j<n =0 Simplex and Applications
Since B’ is an interior point o/, ando/, is an inscribed simplex aof,,, so B’ Shiguo Yang and Silong Cheng
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Using 2.5), (2.6) and @.8), we get

e (5 ) (Se) o (54)

0<i<j<n
Takingzy = 1 = --- = z, = 1in (2.9), we get inequalityZ.1). It is easy
to prove that equality inA.1) holds if the simplexs,, is regular andr’/, is the
tangent point simplex of,,. O
Lemma 2.2 ([, 6]). For then-dimensional simplex,,, we have bl
n Shiguo Yang and Silong Cheng
(2.10) D<) e+ )" Y ah ]
i=0 0<i<j<n
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Lemma 2.5 (F]). For then-dimensional simplex,,, we have

Z a?j = (n+1)? <R2 —@2) :

0<i<j<n

(2.13)

Here O and G are the circumcenter and barycenter of the simptgxrespec-
tively.

Proof of Theoreni.l Using inequalities4.1) and @.10), we get

(2.14) ( Z (@;j)2>< Z a?j) > n"2(n))2(n + 1)"1V2

0<i<j<n 0<i<j<n

By Lemma2.5we have

(2.15) ST (@) < (n+1)*(R).

0<i<j<n
From .13, (2.14 and @.15 we get

nnfl(n!>2 )

(2.16) T

o\ n—1
(R)? (R2 . OG2> >
Using inequalities4.16) and €.12), we get inequality 1.1). It is easy to prove
that equality in {.1) holds if the simplexs,, is regular andy/, is the tangent
point simplex ofo,,. ]
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Proof of Theoreni.3. Since the pedal simplex! is an inscribed simplex of the
simplexa,, thus inequality 2.16) holds for the pedal simplex’, i.e.

n=1 "2 (pl)?

(2-17) (R”> <R2 - 0G ) 2 (n + 1)n+1

Using inequalities4.17) and @.11), we get

n—1 n3n72<n!>2

(2.18) (R//>2 R2(n71) > (R//)2 <R2 . mZ) > (V”)2

By LemmaZ2.4we have

nn/?(n + 1)(n+1)/2
n!

(2.19) V"> (r"".

From 2.18 and €.19 we obtain inequalityX.4). It is easy to prove that equal-
ity in (1.4) holds if the simplex,, is regular andr! is the tangent point simplex
of o,,. O
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