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ABSTRACT. In this paper, we provide, for the-Dunkl transform studied iri [2], a Heisenberg
uncertainty principle and two local uncertainty principles leading to a new Heisenberg-Weyl type
inequality.
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1. INTRODUCTION

In harmonic analysis, the uncertainty principle states that a function and its Fourier transform
cannot be simultaneously sharply localized. A quantitative formulation of this fact is provided
by the Heisenberg uncertainty principle, which asserts that every square integrable fuyfhction
on R verifies the following inequality

(1.1) </_:o x2|f(a;)\2dx) (/_:o AQIf(A)PdA) > i (/_:OLL’Q‘f(JJ)de)Qa

where .
o) = %27 /  f@)e s

is the classical Fourier transform.

Generalizations of this result in both classical and quantum analysis have been treated and
many versions of Heisenberg-Weyl type uncertainty inequalities were obtained for several gen-
eralized Fourier transforms (see [1], [14], [10]).
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In [2], by the use of the;?>-analogue differential operator studied in[11], Bettaibi et al.
introduced a newj-analogue of the classical Dunkl operator and studied its related Fourier
transform, which is aj-analogue of the classical Bessel-Dunkl one and called;ibeinkl
transform.

The aim of this paper is twofold: first, we prove a Heisenberg uncertainty principle for the
g-Dunkl transform and next, we state for this transform two local uncertainty principles leading
to a newg-Heisenberg-Weyl type inequality.

This paper is organized as follows: in Sectign 2, we present some preliminary notions and
notations useful in the sequel. In Sect[dn 3, we recall some results and properties from the
theory of theg-Dunkl operator and the-Dunkl transform (se€ [2]). Sectidr} 4 is devoted to
proving a Heisenberg uncertainty principle for a®unkl transform and as consequences, we
obtain Heisenberg uncertainty principles for #ffeanalogue Fourier transforrh [12,111] and
for the ¢g-Bessel transform [2]. Finally, in Secti¢h 5, we state, for greunkl transform, two
local uncertainty principles, which give a new Heisenberg-Weyl type inequality far Bkl
transform.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we assume|0, 1[, and refer to the general reference [6] for the def-
initions, notations and properties of theshifted factorials and the-hypergeometric functions.
We writeR, = {£¢" : n € Z}, R, + = {¢" : n € Z},
1—¢" (4 O)n
x|, = , re€C and [n])= , nelN.

The ¢?-analogue differential operator is (seel[11], 12])

Fla=t2)+f(—a712)~fa2)+f(—qz)—2f(=2) .
)z if z#£0

lim 0,(f)(x) (inR,) if z=0.

z—0

We remark that iff is differentiable at, thenlim,_., 9,(f)(z) = f'(2).
A repeated application of thg-analogue differential operator is denoted by:

Nf=1f, =0, f).
The following lemma lists some useful computational properties, of

(2.1) 0y(f)(2) =

Lemma 2.1.
(1) For all functionsf onR,,

R L) | ) Sl
B (1 E (i E

where, f. and f, are, respectively, the even and the odd partg.of
(2) For two functionsf andg onRR,, we have
e if fis even and is odd,

9q(f9)(2) = 40,(f)(az)9(2) + f(a2)04(9)(2)
= 04(9)(2) f(2) + a9(q2)94(f)(q2);
e if fandg are even,

0q(f9)(2) = 0,(f)(2)g(q™"2) + f(2)04(9)(2).
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The operatot), induces aj-analogue of the classical exponential function (see[11, 12])
C2) — S i i _ _ n(n+1)
(2.2) e(z;q°) = nz%an ], with  ay, = az,11 = ¢ .

Theg-Jackson integrals are defined by (see [8])

[ e = (1= a3 o o),

[ e = [ st~ [ s

/0 T iwda=(0-9) Y @),

n=—oo

and

o0 o0

| f@da=-0) 3 a0 Y ),

provided the sums converge absolutely.
Theg-Gamma function is given by (see [8])

(4 @)oo -
T, (z) = 1—)'™®,  x#0,—-1,-2,...
¢(2) (q“";q)oo( q) £
e S,(R,) the space of functiong defined orR, satisfying
Vn,m € N, Pomg(f) = sup ‘xmagf(xﬂ < 400

TERg

and
im0 f(x) (in R,) exists

z—0 ¢

o LE(Ry) = {f ¢ [/l = subuer, |f(2)] < o0}
o Lg,q<RQ) = {f : Hf”p,oz,q == (fjooo ’f(l')’p‘£€|2a+ldqm>; < oo} ;
¢ Lﬁ,q([—a, a]) - {f : ||pr,a,q = (ffa |f($)|p|$|2a+1dq$); < OO} .

For the particular casp = 2, we denote by(-;-) the inner product of the Hilbert space
L2 (R,).
a,q q

3. THE ¢-DUNKL OPERATOR AND THE ¢-DUNKL TRANSFORM

In this section, we collect some basic properties of ¢Haunkl operator and the-Dunkl
transform introduced in [2] which will useful in the sequel.
Fora > —1, theg-Dunkl operator is defined by

Mol D)) = 0, [Hoyg (1) (2) + (20411, /D2 TED),

where
Havq : f = fe + fo — fe + q2a+1fo'
It satisfies the following relations:
e Fora = —%, Ao g =0,
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o Ay, livesS,(R,) invariant.

o If fis odd thenA, ,(f)(z) = ¢*t9,f(z) + [2a + 1]q@ and if f is even then
Aag(f) (@) = Oy f ().

e Foralla € C, A, [f(ax)] = aly4(f)(az).

e For all f andg such that/">* A, ,(f)(2)g(x)|z|?**'d,z exists, we have

—+00

(3.1) /_ ooAa,q(f)(x)g(xﬂxIMquf= —/ Naq(9)(@)f(@)]|** Hdgz.

It was shown in[[2] that for each € C, the function
AT
2a+2],
is the unique solution of the-differential-difference equation:

{ Nag(f) = iAf
f(0) =1,

wherej,(+; ¢*) is the normalized third JacksonjsBessel function given by

(3.2) P39 — Jo (A ) + Jar1(Az; ¢%)

0 n(n+1)

(3.3) Jalas ) = D=1 !

0% ¢*)n(¢*@HV; %),

The functiomy$“(x), has a unique extension @ x C and verifies the following properties.

(1= q)a)™

n=0

 Yox () = Y3 (ax) = gf(A), Va,z,AeC.

axr

e Forallz, A e R,,

4
3.4 XA < )
&4 NS G
Theg-Dunkl transformF;“ is defined orL;, ,(R,) (see[[2]) by
+oo
[ Ca, o, o
FRiHM) =52 [ flapi@)le dya,
where
_ (Q+g

T Ta(a+1)
It satisfies the following properties:

e Fora = —%, Fpis theg?-analogue Fourier transforp?(-; q*) given by (seel[12,11))
R (1 _|_q)1/2 400 -
FN ) = () (z)e(—iAz; ¢*)dga.
e On the even functions spack;? coincides with thej-Bessel transform given by (see
[2])
+oo
fa,q(f)()\) = Cayq (x)joc()‘x; q2)$2a+1dq$.

0
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e Forallf e L} (R,), we have:

g 2Ca,q
(3.5) HED(f)lloc.q < —(q;q)m\lf!h,a,q-
e Forallf e L} (R,),suchthat:f € L ,(R,),
(3.6) Fpt(Magf)(A) = iAFR(f)(A)
and
3.7) Aao(Fp(f)) = —iFp(xf).

e Theg-Dunkl transformF’¢ is an isomorphism froniiivq(]R{q) (resp.S,(R,)) onto itself
and satisfies the following Plancherel formula:

(3.8) ||Fg’q<f)||2,a,q = Hf”2,a,q> IS Li,q(Rq)'

4. q-ANALOGUE OF THE HEISENBERG INEQUALITY

In this section, we provide a Heisenberg uncertainty principle forgtbeinkl transform.
For this purpose, inspired by the approach giver in [10], we follow the steps of [1], using the
operatorA,, , instead of the operatar,, and consider the operators

Log(f)(@) = fe(@) + ¢**F fo(qr) and Qf(x) =z f(x),
and theg-commutator:
[Doz7q7 Q]q = Da,qQ - C]QDa,q,
where
Doy = LogNoyg
The following theorem gives a Heisenberg uncertainty principle forgtBeinkl transform
Fpe.

Theorem 4.1.For f € S,(R,), we have

2c0+1 [20[4- ]
a2 + (1 - q—) TAE.

<Nz fll2 gl F " (F) (@)l 2,000

q
4.1
4.1 1+q+q*t +qg~

Proof. By Lemmd 2.1l and simple calculus, we obtain

[Dags Qlof = ¢ fe + ¢ (1 [22#]) fo-

Then, using the Cauchy-Schwarz inequality and the properties gfEhenkl operator, one can
write

. . 20+ 1],
PN + (1 ) Nl

([Dags Qlaf; )]
[(Dag@f = aQDagf; )] < (DagQf; )1+ a{QDayf; f)l
[(Dag(@fe +2f0); /)l + q (Do f;zf)]
|<Aaq (zfe) —I—q2a+2Aaq(:Ef0)(qx) f>|
+ g (P Mg (fe) (q) + Aag(fo) (2); 2. f)]
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< [(Aag(@feo); H+ a2 (Mg (@ fo)(q2); £
+ @ [(Aag(fo) @)z )]+ a[(Aag(fo) (@); 2 f)]|
= [(Aag(@fe); I+ [(Aag(@fo(g)); f)
+ @ [(Nag(fel@)); 2 )] + a[{Aag(fo) (@); 2 f)]
< Nz fellzaallFp (FHllo.aq + a2 follaall e F5* ()20
+ ¢z fellzaglleFp* (H)ll2aq + dlzfollzaallzFp (f)ll2aq
<L+ g+¢ " + g fllzadleF R (20
which achieves the proof. 0J

As a consequence, we obtain a Heisenberg-Weyl uncertainty principle fqf-tealogue
Fourier transform (by taking = —1/2) and theg-Bessel transform (in the even case).

Corollary 4.2.
(1) For f € S,(R,), we have
q ~
(4.2) 1£13.q < Nz fllagllAF (N @)l

1+ q+ q73/2 + q71/2
(2) For an even functiorf € S,(R,), we have

2a+2

q
4.3
@3 L+q+qt+q¢

We remark that when tends tol —, (4.2) tends at least formally to the classical Heisenberg
uncertainty principle given by (1).1).

111304 < 12 l2.0.0|AFaq(F)M2.00-

5. LocAL UNCERTAINTY PRINCIPLES

In this section, we will state, for the-Dunkl transform, two local uncertainty principles
leading to a new Heisenberg-Weyl type inequality.

Notations: For £ C R, and f defined ornR,, we write

[ rdi= [ soneae and Bl = [ e
E —00 E
wherey g is the characteristic function @f.

Theorem 5.1.1f 0 < a < o+ 1, then for all bounded subsefsof R, and all f € L2 (R,),
we have

(5.1) /E IFSUN NP dA < Kool E155 2% f[13 0.4,
where
K :< 2C0.q (a+1a))ﬁl< a+1 )2
“e V2@ +1—-a), a a+l—a
and 7, =
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Proof. Forr > 0, let x,. = x[r,] the characteristic function ¢f-r, | andy, = 1 — x;,.
Then forr > 0, we have, sincg - x, € L (R,),

1/2
([ 105 PP 0 ) = 1F50) el
< [Fp*(f - xo)xEll2aq + IFR(f - Xo)XEl2,000
<|BIPIFR(f - X looq + 1FD(F - X 2,00
Now, on the one hand, we have by the relatjon|(3.5) and the Cauchy-Schwartz inequality,
IED(fxr) ooy < Cagllf - Xrll1a
= Ea,qu_aXr : xafHLmq
< Cagllz™Xr ll2.0.0ll7" fll2,00q

an,q T(a+1)_a|’a:af”2aq‘

VI2(a+1-a),

On the other hand, sincg € L? (R,), we havef - x, € L2 (R,) and by the Plancherel
formula, we obtain

<

IED (f X l2.aq = [1f - Xrll2.00
= [[27Xr - 2 fll2.00
< [l27 X lloo.g 12 Fll 2009

<2 fllz0-

FUf A2a+1dA) < Eér“““rr‘“ 2% flla.aq-
(/| NP —<¢mm+1—wﬁ | 14l

The desired result is obtained by minimizing the right hand side of the previous inequality over
r > 0. O

Corollary 5.2. Fora > —3, 0<a < a+1andb> 0, we have forallf € L? (R,),

2!

a b a «, a
(5.2) 115 < Kasallz® flls oI F5()

2,a,q ||2,a,q7
with

a+b

b\ a+s an =25 | 2 —(2a+1)(a+b)
Ka,b,a - <—> + (‘) " (ZKa,a) q ab
“ ’ (20 + 2],) 750

whereK, , is the constant given in Theor¢m|5.1.

SISy

Proof. Forr > 0, we putE, =] — r,r[NR, andE, the supplementary af,. inR,.
We haveE, is a bounded subset &, and |E, |, < 2[;" +2 . Then the Plancherel formula and
the previous theorem lead to

£ 11300 = 1F5(f )Iliaq
/ |Faq |)\|2a+1d >\+/ |Faq )| ()\)|/\|2a+1dq>\
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< 2K ol BT 2 f 5 g + 1 P INFR (NI

H2,a,q

Ka @ a a — «
< 2—7LT2 H‘T fH%,oa,q +r 2b”)\bFD7q(f)|‘%,a,q'
[2a + 2]5*
The desired result follows by minimizing the right expressions over0. 0J
Theorem 5.3.For & > —1 anda > « + 1, there exists a constart, , . such that for all

bounded subsets of R, and all finL? (R,), we have

[0 (0% 1) a ZQTH
(5.3) /WFQ NEARHAA < KBl A2 g 255

The proof of this result needs the following lemmas.

Lemma 5.4. Suppose > a + 1, thenforallf € L2 (R,) such thatz*f € L7, (R,),

(5.4) £ 1R 0 < K2 [[1f20q + 12° fl204]

where

200+2 2(a—a—1)
)

(@*, 4> —¢**"*, —q 1) oo
(q2o¢+2’ q2(a—a—1)’ _an7 _1’ q2a)oo

K;=2(1-¢q)

Proof. From ([4, Example 1]) and Hoélder’s inequality, we have

+oo 9
a\ % oy — 1 o
= | [ P @I+ ) ey

—00

< K2 [Hfuimq + Hxa ng,oz,q] )

+o0 x20¢+1
Ky =2 —Fd
? /0 1+ 220"

(q2a7 q2a7 —q y —q 3 q2a)oo
<q20¢+27 q2(a—oz—1)7 _q2a’ _1’ q2a)oo

where

200+2 2(a—a—1)

=2(1-g¢)
0
Lemma 5.5. Suppose > « + 1, then for all f € Li (Ry) such that* f € L? (R,), we have

+1

(5.5) 1l < KallF15eg® 2 Fllyng:
where
at1 ] 3
g +
Ke—= K _ 200412 4 —2a+l) (] 4 X0 g
3 = Ks(a, o, q) [(q (7 V) ¢ 1+ ——7) K2
Proof. For s € R,, define the functiory; by f;(z) = f(sz),z € R,.
We have
Ifslliag =572 M flliae 2 fill3ag = 572D )2 fll3 0

Replacement of by f, in Lemmg5.4 gives:

112 g < Ko [s" D13 g + 87 V2 fII30,] -
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Now, for all > 0, puta(r) = igig;g —E (EZE%) . We haves = i € Ryandr < s < L.
Then, for allr > 0,

2 r\ 2t 2 2a—a+1)(|..a £[2
||f”1,a,q < Ko - ||f”2,a,q +r ||I f||2,a,q
q

The right hand side of this inequality is minimized by choosing

a 2a 4 _1 0 et
T:QHJ_Q N lai g 1 U5
When this is done we obtain the result. B

Proof of Theorer 5]3Let £ be a bounded subset &,. When the right hand side of the in-
equality is finite, Lemma 5|4 implies thdte L,(R,), so,F,“(f) is defined and bounded on
R,. Using Lemma5J5, the relatioh (3.5) and the fact that

/EIFE"I(f)(A)VIAIm“qu <I E o IF5 (/)50

we obtain the result with

4(1 4 g) 2
K(/zaq: 2 ( +q) 2K§
T (a+ 1)(g9)5%
at

_ 8(1-¢q)(1+q)* F2+D @ 4 “
I%(a+ (g 9% a+1

(q2a’ q2a’ —q q2(a,—a—1); q2a)oo

(q2a+27 q2(afa71)’ _q2a, _1’ q2a)oo ’

@

-

20042
J

Corollary 5.6. For & > —%,a > o+ 1 andb > 0, we have for allf € L2 (R,),

a+b a «, a
(5.6) 1155 < Kopallz £ fINFEU IS 00
with
a(a+b+1)

/ _ Kz/z,a,q % —(4a+2) b aiiﬁl b *ﬁ 2(a+1)
Ka ba T T q + 7
; [2a+ 2] a+1 a+1

whereK! = is the constant given in the previous theorem.

a7a7q

Proof. The same techniques as in Corollary] 5.2 give the result. O
The following result gives a new Heisenberg-Weyl type inequality fogtBainkl transform.

Theorem 5.7.For a > —3,a # 0, we have for allf € L2 (R,),

(5.7) 1£150q < KallzfllzaqlAED (F)ll2.00:

with
Kl,l,a |f a>0
K, =
Ki,, if a<O.
Proof. The result follows from Corollarigs 5.2 and .6, by taking- b = 1. O
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Remark 1. Note that Theoretn 4.1 and Theorpem|5.7 are both Heisenberg-Weyl type inequalities
for the ¢-Dunkl transform. However, the constants in the two theorems are different, the first
one seems to be more optimal. Moreover, The 4.1is true for every-+ and uses both

f and fo, in contrast to Theorefn §.7, which is true only for£ 0 and uses only.
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