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ABSTRACT. We study multiplicatively perfect, superperfect and analogous numbers . Connec-
tion to various arithmetic functions is pointed out. New concepts, inequalities and asymptotic
evaluations are introduced.
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1. INTRODUCTION

It is well-known that a number is said to be perfect if theum of aliquot divisors ofn is
equal ton. By introducing the functiom (sum of divisors), this can be written equivalently as

(1.1) o(n) = 2n.

The Euclid-Euler theorem gives the form of even perfect numbers: 2*p, wherep =
2k+1 _ 1 is prime (“Mersenne prime”). No odd perfect numbers are known. The numlser
said to be super-perfect if

(1.2) o(o(n)) = 2n.

The Suryanarayana-Kanold theorém![16], [4] gives the general form of even super-perfect

numbers:n = 2%, where2*+! — 1 = pis a prime. No odd super-perfect numbers are known.
For new proofs of these results, seel/[10],/[11]. Many open problems are stated elg..in [1], [10].

2. m-PERFECT NUMBERS

Let7'(n) denote thgroduct of all divisors ofn. There are many numbenswith the property
T(n) = n?, but none satisfying’(T'(n)) = n?. Let us call the numbet > 1 multiplicatively
perfect (or, for short,m-perfect) if

(2.1) T(n) =n?,
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2 J. SANDOR

andmultiplicatively super-perfect (m-super-perfect), if
(2.2) T(T(n)) = n>.

To begin with, we prove the following little result:

Theorem 2.1. All m-perfect numbers have one of the following forms: = p;p, or n = p?,
wherep;, p, are arbitrary, distinct primes. There are no-super-perfect numbers.

Proof. Firstly, we note that i/, ds, . . . , ds are all divisors ofz, then

n n n
dydy, . . dy=42 2 U
{ 1, 42, ) } {dl d2 ds}

implying that
n n n
didy...dg=— —...—,
e dy dy " dy
i.e.
(2.3) T(n) =n*?,

wheres = d(n) denotes the number of (distinct) divisorsrof
Letn = pi*...p2" be the prime factorisation af > 1. It is well-known thatd(n) =

(g +1)...(ay + 1), so equation] (2]1) combined with (R.3) gives
(2.4) (ar+1)... (v, +1)=4.

Sincea; +1 > 1, forr > 2we can have only; +1 = 2, ax+1 = 2, implyinga; = as =1,
i.e.n = pips. Forr = 1 we haven; + 1 = 4, i.e. a; = 3, givingn = p3. There are no other
solutionsn. > 1 (n = 1 is a trivial solution) of equation (2.1).

On the other hand, let us remark that fo>- 2 one hasi(n) > 2, so

(2.5) T(n)>n

with equality only forn = prime. Ifn # prime, then it is immediate tha{(n) > 3, giving
(2.6) T(n) >n*? for n +# prime

Now, relations[(2.6) and (2.6) together give

(2.7) T(T(n)) >n"* n # prime

Thus, by9/4 > 2, there are no non-trivial (i.en # 1) m-super-perfect numbers. In fact, we
have found that the equation

9
(2.8) T(T(n))=n* ac€ (1, Zl)
has no nontrivial solutions. O

Note. According to the referee the notion ofi*perfect numbers”, as well as Theorgm|2.1
appears in[3].

Corollary 2.2. n = 6 is the only perfect number, which is alseperfect.

Indeed,n cannot be odd, since by a result of Sylvester, an odd perfect number must have at
least five prime divisors. If. is even, them = 2fp = p;p, & k = 1, when2 = p, and
22 — 1 =3,when3 = p,. Thusn =2-3 = 6.
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3. k-m-PERFECT NUMBERS
In a similar manner, one can defihen-perfect numbers by
(3.1) T(n) =n"

wherek > 2 is given. Since the equatigiay;, + 1)... (. + 1) = 2k has a finite number of
solutions, the general form éftmultiply perfect numbers can be determined. We collect certain
particular cases in the following.

Theorem 3.1. 1) All tri- m-perfect numbers have the forms= p,p3 or n = p3;

2) All 4-m-perfect numbers have the forms= p,p3 or n = pypsps or n = pi;

3) All 5-m-perfect numbers have the forms= p,pj or n = p{;

4) All 6-m-perfect numbers have the forms= p,p,p2, n = pip5, n = pi';

5) All 7-m-perfect numbers have the forms= p,p§, or n = pi?;

6) All 8-71751-perfect numbers have the forms= p;papsps OF n = pipaps OF n = pips,

n=p,

7) All 9-m-perfect numbers have the forms= p,p3p2, n = pip3, n = pi’;

8) All 10-m-perfect numbers have the forms= p;p.ps, n = p1p), n = pi?, etc.
(Herep; denote certain distinct primes.)

Proof. We prove only the case 6). By relatign (2.3) we must solve the equation
(3.2) (n+1)...(, +1) =16
in ;. andr. It is easy to see that the following four cases are possible:
|) a1+1:2,a2+1:2,a3+1:2,a4+1:2;
||) 041—1—1:2,0424—1:2,043—0—1:4,a4+1:4;
|||) o+ 1=4,a,+1=4
V) oy + 1= 16.
This gives the general forms of all:8-perfect numbers, namelyy; = a; = a3 = a4 = 1)
n = pipapsps; (@1 = 1, a0 = 1, a3 = 3) n = pipops; (a1 = 3, ag = 3) n = pips; (ay = 15)
n = pi. [

Corollary 3.2. 1) n = 28 is the single perfect and tri-perfect number.
2) There are no perfect and 4-perfect numbers;
3) n = 496 is the only perfect number which isrb-perfect;
4) There are no perfect numbers which are6perfect;
5) n = 8128 is the only perfect number which isnz-perfect.

In fact, we have:

Theorem 3.3. Letp be a prime, with2? — 1 prime too (i.e.2? — 1 is a Mersenne prime). Then
2P~1(27 — 1) is the only perfect number, whichjsmn-perfect.

Proof. By writing (a; + 1) ... (a. + 1) = 2p (p prime), the following cases are only possible:
Dar+1=2,a0+1=p;
i) ag +1=2p.
Thenn = piph ' orn = p»~' are the general forms gf-m-perfect numbers. By the
Euclid-Euler theoren;n»lp];‘1 = 2r-1(2P — 1) iff p, = 2 andp, = 2P — 1 is prime. O

Remark 3.4. For p < 10000 the following Mersenne primes are known; namely foe 2, 3,
5,7,13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941. Itis an open problem to show the existence of infinitely many Mersenne primes ([1]).
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4. SOME RESULTS FOR k-m-PERFECT NUMBERS

As we have seen, the equation (2.2), 787 (n)) = n* has no nontrivial solutions. A similar
problem arises for the equation

(4.1) T(T(n))=n" n>1
(k > 2, fixed). By [2.3) we can see that this is equivalent to
4.2) w &

Letn = p{'...p% > 1be the canonical representationoBy d(n) = (a1 +1) ... (. +1),
and [2.B) we have

T(n) _ p?l(aﬁl)...(awl)/z - .p?,.(oq-}-l),,_(ar_}_l)/z’
so (4.2) becomes equivalent to

4.3)
(1 +1)... (v, + 1)

041(041+1>---(O‘7‘+1)+1}~.-[O€T(Oﬂ+1).”(&r+1)+1 = 4k,

2 2

and this, clearly has at most a finite number of solutions.
Theorem 4.1. 1) Equation [(4.1) is not solvable fdr= 4, 5, 6;
2) For k = 3 the general solutions are = p?;
3) For k = 7 the solutions arex = p?;
4) For k = 9 the solutions aren = pi1ps (p1 # p2 Primes).

Proof. For k = 4,5, 6, from (4.3) we must solve the corresponding equations for 16, 20, 24.
It is a simple exercise to verify these impossibilities. ko= 3 we have the single equality

12 =34, whena; =2, 2@* 4 1 =4 Fork =7,a; =3by 3! + 1 =7and4 7 = 28.
Fork=9wehave2-2-3-3 =36anda; = ay = 1. O

Corollary 4.2. n = 6 is the single perfect number which is also 9-supeperfect.

Indeedp;p, =2 - (22 — 1) = 2- 3 = 6 by Theorenf 4]1 and the Euclid-Euler theorem.
Remark 4.3. By relation [2.6), by consecutive iteration we can deduce

T(T(.. z(n) . )Z > p3t/2*

k

for n # prime. Since3® > 2% .k for all k > 1 (induction: 3**! = 3.3F > 3.2%F .k >
2. 28(k + 1) = 2¥Y(k + 1)) we can obtain the following generalization of equat(2.2):
T(T(...T(n)...)) =nF

-

k

has no nontrivial solutions.

5. OTHER RESULTS

By relation [2.3) we have
logT(n) d(n)

5.1 =
(5-1) logn 2
Clearly, this implies
logT log T
lim inng—(n) =1, lim supog—(n) = +00
n—oo logn n—oo logn
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(take e.g.n = p (prime);n = 2* (k € N)). Since2 < d(n) < 2v/n (see e.g.[[13]) fon > 2

we get

log T'(n) < Vi
logn

By 2¢(") < d(n) < 2% (see e.g.[]12]) we can deduce:

gwn)—1 < log T'(n) < 20— (n>2).
logn

1<

Since it is known by a theorem of Hardy and Ramanujan [2] that the normal order of magni-
tude ofw(n) andQ)(n) is log log n, the above double inequality implies that:
the normal order of magnitude of

(5.2) loglogT'(n) — log log nis(log 2)(loglogn — 1).
By a theorem of Wiegert/([17]) we have
lim sup log d(n)loglogn ~log2.
n—o0 logn
so by [5.1) we get:
loglog T log1
(5.3) lim sup (ogloaT(n)(loglogn) _ "o

n—oo log n
In fact, by a result of Nicolas and Robin ([7]), far> 3 one has
log d(n) <. logn

~ 1,5379...
log2 — Tloglogn (e~ 1, )

we can obtain the following inequality:

k1
(5.4) loglog T'(n) < loglogn + o8 log 2,
loglogn
wherek = clog 2 andn > 3. This gives
. loglogT(n)
(5.5) lim ——————~ =0
n—oo  f(n)
for any positive function Withf(n)llof% — 0 (n — 00).
By ¢(n)d(n) > n (seel[14]) andp(n)d*(n) < n? for n # 4 (see[8]) we get
Lgd(n)g n for n >4,
p(n) p(n)

and this, by[(5.1) yields
n < log T'(n) < n__

2¢(n) logn 2/ (n)

Here is the usual Euler totient function.
Hence, the arithmetic functidfi is connected to the other classical arithmetic functions.
By vn < 1 < =L (see[14], [5], [6]), we get

a(n) < logT(n) < U(n).

n+1= logn — 2yn

For infinitely many prime® we have

log p
dip—1
(—1) > exp (clogbgp)

(5.6)

(5.7)
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(c > 0, constant, se¢[9]), so we have:

1
(5.8) loglogT'(p — 1) > loglog(p — 1) + C08b log 2
log log p
for infinitely many prime®, implying, e.g.
: loglogT'(p — 1)
(5.9) lim sup = 400
R log log p
and
loglog T log1
(5.10) lim inf (08108 T(n))(0glogn)
n—oo logn
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