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ABSTRACT. We study multiplicatively perfect, superperfect and analogous numbers . Connec-
tion to various arithmetic functions is pointed out. New concepts, inequalities and asymptotic
evaluations are introduced.
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1. I NTRODUCTION

It is well-known that a numbern is said to be perfect if thesum of aliquot divisors ofn is
equal ton. By introducing the functionσ (sum of divisors), this can be written equivalently as

(1.1) σ(n) = 2n.

The Euclid-Euler theorem gives the form of even perfect numbers:n = 2kp, wherep =
2k+1 − 1 is prime (“Mersenne prime”). No odd perfect numbers are known. The numbern is
said to be super-perfect if

(1.2) σ(σ(n)) = 2n.

The Suryanarayana-Kanold theorem [16], [4] gives the general form of even super-perfect
numbers:n = 2k, where2k+1 − 1 = p is a prime. No odd super-perfect numbers are known.
For new proofs of these results, see [10], [11]. Many open problems are stated e.g. in [1], [10].

2. m-PERFECT NUMBERS

LetT (n) denote theproduct of all divisors ofn. There are many numbersn with the property
T (n) = n2, but none satisfyingT (T (n)) = n2. Let us call the numbern > 1 multiplicatively
perfect (or, for short,m-perfect) if

(2.1) T (n) = n2,
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2 J. SÁNDOR

andmultiplicatively super-perfect (m-super-perfect), if

(2.2) T (T (n)) = n2.

To begin with, we prove the following little result:

Theorem 2.1. All m-perfect numbersn have one of the following forms:n = p1p2 or n = p3
1,

wherep1, p2 are arbitrary, distinct primes. There are nom-super-perfect numbers.

Proof. Firstly, we note that ifd1, d2, . . . , ds are all divisors ofn, then

{d1, d2, . . . , ds} =

{
n

d1

,
n

d2

, . . . ,
n

ds

}
,

implying that

d1d2 . . . ds =
n

d1

· n

d2

. . .
n

ds

,

i.e.

(2.3) T (n) = ns/2,

wheres = d(n) denotes the number of (distinct) divisors ofn.
Let n = pα1

1 . . . pαr
r be the prime factorisation ofn > 1. It is well-known thatd(n) =

(α1 + 1) . . . (αr + 1), so equation (2.1) combined with (2.3) gives

(2.4) (α1 + 1) . . . (αr + 1) = 4.

Sinceαi +1 > 1, for r ≥ 2 we can have onlyα1 +1 = 2, α2 +1 = 2, implyingα1 = α2 = 1,
i.e. n = p1p2. For r = 1 we haveα1 + 1 = 4, i.e. α1 = 3, giving n = p3. There are no other
solutionsn > 1 (n = 1 is a trivial solution) of equation (2.1).

On the other hand, let us remark that forn ≥ 2 one hasd(n) ≥ 2, so

(2.5) T (n) ≥ n

with equality only forn = prime. If n 6= prime, then it is immediate thatd(n) ≥ 3, giving

(2.6) T (n) ≥ n3/2 for n 6= prime.

Now, relations (2.5) and (2.6) together give

(2.7) T (T (n)) ≥ n9/4, n 6= prime.

Thus, by9/4 > 2, there are no non-trivial (i.e.n 6= 1) m-super-perfect numbers. In fact, we
have found that the equation

(2.8) T (T (n)) = na, a ∈
(

1,
9

4

)
has no nontrivial solutions. �

Note. According to the referee the notion of “m-perfect numbers”, as well as Theorem 2.1
appears in [3].

Corollary 2.2. n = 6 is the only perfect number, which is alsom-perfect.

Indeed,n cannot be odd, since by a result of Sylvester, an odd perfect number must have at
least five prime divisors. Ifn is even, thenn = 2kp = p1p2 ⇔ k = 1, when2 = p1 and
22 − 1 = 3, when3 = p2. Thusn = 2 · 3 = 6.
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ON MULTIPLICATIVELY PERFECTNUMBERS 3

3. k-m-PERFECT NUMBERS

In a similar manner, one can definek-m-perfect numbers by

(3.1) T (n) = nk

wherek ≥ 2 is given. Since the equation(α1 + 1) . . . (αr + 1) = 2k has a finite number of
solutions, the general form ofk-multiply perfect numbers can be determined. We collect certain
particular cases in the following.

Theorem 3.1. 1) All tri- m-perfect numbers have the formsn = p1p
2
2 or n = p5

1;
2) All 4-m-perfect numbers have the formsn = p1p

3
2 or n = p1p2p3 or n = p7

1;
3) All 5-m-perfect numbers have the formsn = p1p

4
2 or n = p9

1;
4) All 6-m-perfect numbers have the formsn = p1p2p

2
3, n = p1p

5
2, n = p11

1 ;
5) All 7-m-perfect numbers have the formsn = p1p

6
2, or n = p13

1 ;
6) All 8-m-perfect numbers have the formsn = p1p2p3p4 or n = p1p2p

3
3 or n = p3

1p
3
2,

n = p15
1 ;

7) All 9-m-perfect numbers have the formsn = p1p
2
2p

2
3, n = p1p

8
2, n = p17

1 ;
8) All 10-m-perfect numbers have the formsn = p1p2p

4
3, n = p1p

9
2, n = p19

1 , etc.
(Herepi denote certain distinct primes.)

Proof. We prove only the case 6). By relation (2.3) we must solve the equation

(3.2) (α1 + 1) . . . (αr + 1) = 16

in αr andr. It is easy to see that the following four cases are possible:

i) α1 + 1 = 2, α2 + 1 = 2, α3 + 1 = 2, α4 + 1 = 2;
ii) α1 + 1 = 2, α2 + 1 = 2, α3 + 1 = 4, α4 + 1 = 4;

iii) α1 + 1 = 4, α2 + 1 = 4;
iv) α1 + 1 = 16.

This gives the general forms of all 8-m-perfect numbers, namely(α1 = α2 = α3 = α4 = 1)
n = p1p2p3p4; (α1 = 1, α2 = 1, α3 = 3) n = p1p2p

3
3; (α1 = 3, α2 = 3) n = p3

1p
3
2; (α1 = 15)

n = p15
1 . �

Corollary 3.2. 1) n = 28 is the single perfect and tri-perfect number.
2) There are no perfect and 4-perfect numbers;
3) n = 496 is the only perfect number which is 5-m-perfect;
4) There are no perfect numbers which are 6-m-perfect;
5) n = 8128 is the only perfect number which is 7-m-perfect.

In fact, we have:

Theorem 3.3.Letp be a prime, with2p − 1 prime too (i.e.2p − 1 is a Mersenne prime). Then
2p−1(2p − 1) is the only perfect number, which isp-m-perfect.

Proof. By writing (α1 + 1) . . . (αr + 1) = 2p (p prime), the following cases are only possible:

i) α1 + 1 = 2, α2 + 1 = p;
ii) α1 + 1 = 2p.

Then n = p1p
p−1
2 or n = p2p−1

1 are the general forms ofp-m-perfect numbers. By the
Euclid-Euler theoremp1p

p−1
2 = 2p−1(2p − 1) iff p2 = 2 andp1 = 2p − 1 is prime. �

Remark 3.4. For p < 10000 the following Mersenne primes are known; namely forp = 2, 3,
5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941. It is an open problem to show the existence of infinitely many Mersenne primes ([1]).
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4 J. SÁNDOR

4. SOME RESULTS FOR k-m-PERFECT NUMBERS

As we have seen, the equation (2.2), i.e.T (T (n)) = n2 has no nontrivial solutions. A similar
problem arises for the equation

(4.1) T (T (n)) = nk; n > 1

(k ≥ 2, fixed). By (2.3) we can see that this is equivalent to

(4.2)
d(n)d(T (n))

4
= k.

Let n = pα1
1 . . . pαr

r > 1 be the canonical representation ofn. By d(n) = (α1+1) . . . (αr +1),
and (2.3) we have

T (n) = p
α1(α1+1)...(αr+1)/2
1 . . . pαr(α1+1)...(αr+1)/2

r ,

so (4.2) becomes equivalent to
(4.3)

(α1 + 1) . . . (αr + 1)

[
α1(α1 + 1) . . . (αr + 1)

2
+ 1

]
. . .

[
αr(α1 + 1) . . . (αr + 1)

2
+ 1

]
= 4k,

and this, clearly has at most a finite number of solutions.

Theorem 4.1. 1) Equation (4.1) is not solvable fork = 4, 5, 6;
2) For k = 3 the general solutions aren = p2

1;
3) For k = 7 the solutions aren = p3

1;
4) For k = 9 the solutions are:n = p1p2 (p1 6= p2 primes).

Proof. For k = 4, 5, 6, from (4.3) we must solve the corresponding equations for 16, 20, 24.
It is a simple exercise to verify these impossibilities. Fork = 3 we have the single equality
12 = 3 · 4, whenα1 = 2, α1(α1+1)

2
+ 1 = 4. Fork = 7, α1 = 3 by 3·4

2
+ 1 = 7 and4 · 7 = 28.

Fork = 9 we have2 · 2 · 3 · 3 = 36 andα1 = α2 = 1. �

Corollary 4.2. n = 6 is the single perfect number which is also 9-super-m-perfect.

Indeed,p1p2 = 2 · (22 − 1) = 2 · 3 = 6 by Theorem 4.1 and the Euclid-Euler theorem.

Remark 4.3. By relation (2.6), by consecutive iteration we can deduce

T (T (. . . T (n) . . . ))︸ ︷︷ ︸
k

≥ n3k/2k

for n 6= prime. Since3k > 2k · k for all k ≥ 1 (induction: 3k+1 = 3 · 3k > 3 · 2k · k >
2 · 2k(k + 1) = 2k+1(k + 1)) we can obtain the following generalization of equation (2.2):

T (T (. . . T (n) . . . ))︸ ︷︷ ︸
k

= nk

has no nontrivial solutions.

5. OTHER RESULTS

By relation (2.3) we have

(5.1)
log T (n)

log n
=

d(n)

2
.

Clearly, this implies

lim
n→∞

inf
log T (n)

log n
= 1, lim

n→∞
sup

log T (n)

log n
= +∞
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(take e.g.n = p (prime);n = 2k (k ∈ N)). Since2 ≤ d(n) ≤ 2
√

n (see e.g. [13]) forn ≥ 2
we get

1 ≤ log T (n)

log n
≤
√

n.

By 2ω(n) ≤ d(n) ≤ 2Ω(n) (see e.g. [12]) we can deduce:

2ω(n)−1 ≤ log T (n)

log n
≤ 2Ω(n)−1 (n ≥ 2).

Since it is known by a theorem of Hardy and Ramanujan [2] that the normal order of magni-
tude ofω(n) andΩ(n) is log log n, the above double inequality implies that:
the normal order of magnitude of

(5.2) log log T (n)− log log nis(log 2)(log log n− 1).

By a theorem of Wiegert ([17]) we have

lim
n→∞

sup
log d(n) log log n

log n
= log 2,

so by (5.1) we get:

(5.3) lim
n→∞

sup
(log log T (n))(log log n)

log n
= log 2.

In fact, by a result of Nicolas and Robin ([7]), forn ≥ 3 one has

log d(n)

log 2
≤ c

log n

log log n
(c ≈ 1, 5379 . . . ),

we can obtain the following inequality:

(5.4) log log T (n) ≤ log log n +
k log n

log log n
− log 2,

wherek = c log 2 andn ≥ 3. This gives

(5.5) lim
n→∞

log log T (n)

f(n)
= 0

for any positive function with log n
f(n) log log n

→ 0 (n →∞).
By ϕ(n)d(n) ≥ n (see [14]) andϕ(n)d2(n) ≤ n2 for n 6= 4 (see [8]) we get

n

ϕ(n)
≤ d(n) ≤ n√

ϕ(n)
for n > 4,

and this, by (5.1) yields

(5.6)
n

2ϕ(n)
≤ log T (n)

log n
≤ n

2
√

ϕ(n)
.

Hereϕ is the usual Euler totient function.
Hence, the arithmetic functionT is connected to the other classical arithmetic functions.
By
√

n ≤ σ(n)
d(n)

≤ n+1
2

(see [14], [5], [6]), we get

(5.7)
σ(n)

n + 1
≤ log T (n)

log n
≤ σ(n)

2
√

n
.

For infinitely many primesp we have

d(p− 1) > exp

(
c

log p

log log p

)
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(c > 0, constant, see [9]), so we have:

(5.8) log log T (p− 1) > log log(p− 1) +
c log p

log log p
− log 2

for infinitely many primesp, implying, e.g.

(5.9) lim
p→∞

p prime

sup
log log T (p− 1)

log log p
= +∞

and

(5.10) lim
n→∞

inf
(log log T (n))(log log n)

log n
> 0.
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