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ABSTRACT. We present a method, based on series expansions and symmetric polynomials, by
which a mean of two variables can be extended to several variables. We apply it mainly to the
logarithmic mean.
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1. INTRODUCTION

Throughout this papern, > 2 is an integer and, . . ., z,, are positive real numbers.
The logarithmic mean of; andzx, is defined by

T — T2

(1.1) L(l“l,xz) if 2y # 2,

Inzy — Inaxy
L(C(]l, Il) = T.
There are several ways to extend thisteariables. Bullen ([1, p. 391]) writes that perhaps the

most natural extension is due to Pittenger [13]. Based on an integral, it is
-1

(1.2) L(xl7"'7 n = n_l ZHJ 1 lnxl lnl'j)

if all the z;’s are unequal. Bullen(([1, p. 392]) also writes that another natural extension has
been given by Neuman![9]. Based on the integral| (6.3), it is

(13) L(ZL‘l,...,

- 1)!
(n ZH7 1 ( lna:l Inz;)

if all the z;'s are unequal. It is obviously different fror@[.Z).
If some of ther;’s are equal, thenj (1.2) and (IL.3) are defined by continuity.
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Mustonen [[6] gave[ (1]3) in 1976 but published it only recernitly [7] in the home page of his
statistical data processing system, not in a journal. We will present his method. It is based on a
series expansion and supports the notion fhat (1.3) is the most natural extengiop of (1.1).

In general, we call a continuous real functiprof two positive (or nonnegative) variables a
mean if, for allx, x5, ¢ > 0 (Or z1, 25, ¢ > 0),

(i1) (@1, x2) = (@2, 21),

(i2) p(z1, 21) = 271,

(13) plcxs, cxz) = cu(wy, x2),
(ia) x1 < y1, 02 < Yo = p(wr, 22) < (Y1, y2),
(15) min(zy, xe) < p(z1, r9) < max(xq, xs).

Axiomatization of means is widely studied, see €.g. [1] and references therein.

2. PoLYNOMIALS CORRESPONDING TO A MEAN

To extend the arithmetic and geometric means

Az, x9) = al ;—@, G(zy1,22) = (Ill'g)%
to n variables is trivial, but to visualize our method, it may be instructive.
Substituting
(2.1) T =€, 19 = €2
we have
(2.2) Az, m5) = A(uy, ug)

1
=3 (e" +e*?)

1 u? u3
=z(1l+uwu+5++1+tus+ 7+

2 2! 2!
IS B SR B
2 2! 2 3! 2 ’
(23) G(SCl,QZQ) = é(Ul,UQ)
= (ene)!
uqtug
= 2
2
UL + Us 1 fug +uo
L +2!< 2 )+
. Uy + U9 1 (Ul =+ UQ)2 1 (Ul + U2)3
=14+ 5 +§.T+§.T+...7
(24) L(l‘l,ZL’Q) = Z}(ul,u2)
g — gn
_u1_U2
ui uj
:(1‘1‘”1"‘5‘1‘"'_1—“2—5_"')(u1—u2)1
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u2 — u2 ud — ud
gt 1w +wup + 43 —I—l Cui + uiup +wud + L
2 2! 3 3! 4
All these expansions are of the form
1 1
(2.5) 1+ Pr(uy, ug) + B Py(ur, uz) + 30 Py(ui, ug) + -+
where theP,,’'s are symmetric homogeneous polynomials of degreén all of them,
U+ u
Pl(ul,UQ) = ! 9 2 :A(Ul,UQ>.
The coefficients of
(2.6) Pr(us, ug) = bouf" 4+ byl ug + -+ 4 by ul!
are nonnegative numbers with sumThey are forA
1
50—5751_ _bmfl_()?bm:_?
for G
by = (’Z)z‘m (0<k<m),
and forL
1
bp=""=bp=——.
0 m+1

Let . be a mean of two variables. Assume that it has a valid exparjsign (2.5 B2, and
denote byP,, (1] the polynomial|(2.B). Its coefficients define a discrete random variable, denoted
by X,.[1], whose value i& (0 < k < m) with probabilityb. In particular,X,,[A] is distributed
uniformly over{0, m}, and X,,|G] binomially and.X,,,[L] uniformly over{0,...,m}. Their
variances satisfy

Var X,,,[G] < Var X,,,[L] < Var X,,,[4],

which is an interesting reminiscent of

(27) G(I’l,l’z) < L(IlaxQ) < A(x17x2)'
Letu,,us > 0, then [2.7) holds in fact termwise:
(2.8) Po|G(u1, u2) < Po[L](u1, uz) < Pa[A](u1, uz)

for all m > 1. The functions

R [p)(u, uz) = (P[] (1, ug)) ™
are means. In particular, fof they are moment means
ul® + ul’ "
oY) = (M) = 00,
for G all of them are equal to the arithmetic mean

+
Rl 2) = 5% = Al ),
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and for L they are special cases of complete symmetric polynomial means and Stolarsky means
(see e.qg.[1, pp. 341, 393))

Ry [L)(u1, uz) =

1 1
w gt }m o (UT+UT1U2+'“+U?>T”
(m+ 1) (ug — ug) m+1

Since theP,,|u|'s are symmetric and homogeneous polynomials of two variables, they can
be extended ta variables. Thug can also be likewise extended.

3. TRIVIAL EXTENSIONS: A AND G
Consider firstd. By (2.2),
u’ + uy’
2
To extend it ton variables is actually as trivial as to exteAdlirectly. We obtain

u'in_l_.._f_u;n

Pp[Al(ur, uz) =

Pm[A]<U1, . 7un) =

n
and so
=1
A(LEl,,ZL'n):ZﬁPm[A](uh 7“’71)

m=0

NS ST
n m! m!

m=0 m=0

n n

Next, studyG. By (2.3),

PalGltun ) = (5

which can be immediately extended to

PG, . un) = (W) ,

and so
o0
G(z1, .. Z Gl(u, ..., up)
m
m=
_ e@ _ (eul...eun)% = (21 T)".

We present a “termwise” (cf[ (2.8)) proof of the geometric-arithmetic mean inequality

(3.1) Gy, ... xn) < Az, ..o x0).

We can assume that, ..., u, > 0; if not, considercG < cA for a suitablec > 0. Letm > 1.
Then

(3.2) PLG)(uy, ... un) < PylAl(ug, ... up)
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or equivalently
(3.3 R |Gl(uy, .. un) < Ry [Al(ug, ... uy),

since

<

1
Uy + -+ up, ul' + o Fup\ "
n n

by Schiémilch’s inequality (see e.d./[1, p. 203]). Therefore|(3.1) follows.

4. EXTENDING L

Let1 < m < n. Themth complete symmetric polynomiaf u.,...,u, > 0 (see e.g.[]1,
p. 341]) is defined by

Con(ur,y ..o uy) = Z ugt - u, ™
i1 tin=m
(Hereiy, ..., i, > 0, and we defin@’ = 1.)
Let us now study_. DenoteQ,,, = P,,[L]. By (2.4),
ul +u g 4 Ul
m—+1

Qm(ur,uz) =
This can be easily extended to

n+m-—1
m

(4.1) Qulur, - .. un) = ( >_1C'm(u1,...,un).

The corresponding mean,

1

Ry [L) (w1, .. un) = Qmug, ... ty)™,

is called [1] themth complete symmetric polynomial meainu,, . . . , u,.
Thus we extend

=1
(4.2) L(zy, ..., x,) :1+Z%Qm(u1,...,un).

m=1
We compute this explicitly. Fixn > 2. Assume thaty, ..., u, > 0 are all unequal. We claim
thatif 2 < n < m + 1, thenC,,_,1+1(u1,...,u,) is the(n — 1)th divided difference of the
function f(u) = «™ with arguments, . .., u,,. In other words,

Om—n ) n_Cm—n )y Un—
(43)  Conrlun,. o) = sl tn) = Oncna(, - tnoa)
Up — Uy

(Forn = 2, we have simplC,,, 1 (uy,us) = %.)

To prove this, note that for > 1

(4.4) Crluy,...,u,) = uﬁ + ui_lCl(ul, ce sy Upq)
+ o u, G (U, oy ) + Crlug, oo Uup—1)
and

Ck(“h <. ,Un) - Ck’(ub Un) + Ok—l(uh un)cl(u27 s 7un—1)
+ -+ C’l(ul,un)Ck_l(UQ, Ce ,un_l) + Ck(UQ, P ,un_l).
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Hence,
Crn—nio(ug, ... up) — Co_pyo(Ug, - ooy Up—1)
= Chna2(ug, ... uy) — Chypao(ug, o Up_1,uq)
=u™ " ™ O (ugy U)o A Coppa (U, - Up1)
— U O (ugy U)o — oo (U U )
= (u™ " =) (OO (g )
+ (U — 1) Crng1 (U, oy Up1)

= (un - ul) [Cm—n+1(u17 un) + Cm—n(uh un)cl(u27 s 7un—1) + -

+ Cm7n+1 (UQ, . ,un,l)
- (un - Ul)cm—n—i—l(ulu e 7un)7

and [4.38) follows.
By a well-known formula of divided differences (see eld. [4, p. 148]), we now have

n

C’m_n+1(u1, . ,un) =

where

Therefore, since

(m—n-+1 m-—n-+1 m)!
we obtain
1 (n—1)!
( —n+ 1) Qm n—i—l(ul, Ce ,Un) = il Om—n—i—l(ul, 7un)
(n— 1) S~ up
m! U;

Hence, and because theh divided difference of the functiofi(u) = v islif m =n — 1
and0 if m <n — 2, we have

[e.o]

1
L(xl,...,xn)zl—i—zk—Q (U1, .., uy)
k=1
e o
(m—n+1)! Y

3

=n

+ (n —1)! ;m'ZU
(n—1)! Z Z—

mnl
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ooln
“1252%
n—lzn: OO%

-y

i=1 ¢

‘“‘”Q:H%zim»

J#i

I.
=(n—1)! o . .
; sz (Inz; —Inxz))
Thus [1.3) is found.

5. NUMERICAL COMPUTATION OF L

Mustonen[[7] noted that, in computirignumerically, the explicit formuld (1] 3) is very unsta-
ble. He programmed a fast and stable algorithm bas€d dn (4.1), (4.2)), gnd (4.4). His experiments

lead to a conjecture that, denotitg = G(1,...,n) andL, = L(1,...,n), we have
lim (Gn+1 - Gn) = lim (Ln+1 - Ln) = -
and
. Gy . L, 1
lim — = lim — = —.
n—oo 1N n—oo M, e

For G,,, these limit conjectures can be proved by using Stirling’s formula./Fothey remain
open.

6. INEQUALITY G L<A
It is natural to ask, whether
(6.1) G(r1,.. . xn) < Llxy, ... xp) < Az, .., 2p)

is generally valid.
Forn = 2, this inequality is old (see e.d./[1, pp. 168-169]). Carlson [2] (see also [1, p. 388])
sharpened the first part and Lin [5] (see also [1, p. 389]) the second:

(6.2) (G(I1,$2)M1/2($17$2))% < L(wy,w2) < Myy3(x1, 29).
Neuman|[9] defined (as a special case of [9, Eq. (2.3)])

(6.3) L(zy,...,z,) = / (exp Z u; In x,) du,
Enfl

i=1
whereu; + -+ +u,, = 1,
E,1={(ug, . sup_1) |1,y o yup_1 >0, ug + - +u,_1 <1},

and d¢ = duy - - - du,—1. He ([9], Theorem 1 and the last formula) provged(6.1) and reduced
@.3) into [L3).

Petaric and Simg [12] tied Neuman’s approach to a wider context. As a special case ([12,
Remark 5.4]), they obtainefd (1.3).
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Let V denote the Vandermonde determinant and’}etenote its subdeterminant obtained by
omitting its last row andth column. Xiao and Zhan@ [14] (unaware of [9]) defined

(n— 1) |
— 1) V(1 oo Inxy),
V(nwzy,...,Inxz,) ;( )" Vi(lnay n,)

which in fact equals td (I} 3). Also they proved (6.1).
We conjecture thaf (6,2) can be extended to

(Gx1, - xn)Myjg(1, . w0))2 < Ly, ) < Myjs(ay, ..., ).

n

L(zy,...,x,) =

7. INEQUALITIES P, |G| < P,[L] < P,[4]

In view of (3.2) and[(38), it is now natural to ask, whethjer|(6.1) can be strengthened to hold
termwise. In other words: Do we have

BplG] < PulL] < PnlA]
or equivalently

that is
1
(7.1) A o ) < (“ bl )
n n
forall uy,...,u, >0,m>1?

Fix uq, ..., u, and denote,, = Q,,(u1, . .. ,u,)=. Neuman ([8, Corollary 3.2]; see alsgd [1,
pp. 342-343]) proved that

(7.2) kE<m = q; < gn.

The first part of[(7.[Ll)¢: < ¢, is therefore true. We conjecture that the second part is also true.
DeTemple and Robertson/[3] gave an elementary prodf of (7.2) fer 2, but Neuman'’s
proof for generah is advanced, applying-splines.
Mustonen[|7] gave an elementary proof|of (7.1) fo&= 2.

8. OTHER MEANS

Peaaric and Simé [12] (see alsol]1, p. 393]) studied a very large class of means, called
Stolarsky-Tobey meanwhich includes all the ordinary means as special cases. They first de-
fined these means for two variables and then, applying certain integrals, extended them to
variables. It might be of interest to apply our method to all these extensions, but we take only a
small step towards this direction.

Let » ands be unequal nonzero real numbers. (Actudlly [12] allons 0 and [1] allows
r = 0, both of which are obviously incorrect.) Consider ([12, Eq. (6)]) the mean

1

8.1) Byo(m, 1) = (i . ;) o
s x] — x5
wherezr; # xo. Assuming that # —r, —2r, ..., —(n—2)r, this can be extended ([12, Theorem
5.2(1)]) to
(n . 1 | n— s+(n 2)r s—r
82 ETS geeeydin) — )
(8.2) sl n) (s+7r)-- (s+ (n—2)r anlx—x)

where all ther;’s are unequal.
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To extend[(8.11) by our method, we simply note that

1

x5 — x5 "t — xf s—r
Ers — 1 2 1 2
a(@1,7) L‘(ln r1 — In xg)/ r(lnz; —Inxy)

_1
_ (L(xm )
L(af, x3) ’
which can be immediately extended to
(8.3) E,s(z1,...,2,)

_ (L, )
O\ L(2},...,am)

n

1

{ZHJ1 lnxl Inz;)] / H?i (lnxz; lnx])]}
- [( ) ZH, 1 ( ln:EZ Inz; /E:HJ 1 ( lnxl lna:j)] _ '

J#i J#i

This is obviously different froni (8]2).

Unfortunately the problem of whethér (8.3) indeed is a mean, i.e., whether it lies between the
smallest and largest;, remains open.

1

s—r

ADDENDUM
Neuman ([10, Theorem 6.2]) proved the second paift of (7.1)land [11] showe{ that (8.3) is a

mean.
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