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ABSTRACT. In this paper we obtained existence and uniqueness results for the modified second
order slip Reynolds equation modeling the performance of the slider head floating over a rotating
disk inside a hard disk drive. The existence and the uniqueness are proved using the Ky-Fan’s
Lemma and some monotonicity techniques.
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1. I NTRODUCTION

The advent of mini-fabrication and the ability to develop micro-machines for various appli-
cations have made micro-scale fluid dynamics increasingly important. In terms of application,
microelectromechanical systems are devices having characteristic length of micrometer or even
nanometer order. Microscale flows are found in micro-pumps and micro-turbines and in such
applications, the flow cannot be considered as a continuum. This involves the selection of an
appropriate model and boundary conditions. This deviation is measured by the Knudsen num-
ber(Kn) (the ratio of the molecular mean free path and the film thickness). Normally, flow can
be classified into three categories [2]:Kn ≤ 10−3 the flow can be considered as a continuum;
Kn > 10 the flow is considered to be a free molecular flow;10−3 ≤ Kn ≤ 10 the flow can
neither be a continuum flow nor a free molecular one.

The conventional Navier-Stokes equations are based on a continuum assumption and it is no
longer valid if the Kundsen number is beyond a certain limit [1]. A typical example is the case
of the slider head floating over a rotating disk inside a hard disk drive (HDD).
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Figure 1.1: Slider-bearing flow geometry

This type of thin-film problem has been approximated by the famous Reynolds equation
which is derived from the inertialess form of the Navier-Stokes equations combined with the
continuity equation. Appropriate modifications such as slip boundary conditions are the realm
of micro-fluid mechanics. Another approach is molecular-based models which are derived from
kinetic theories.

1.1. Reynolds Equation and Molecular Models.

1.1.1. Reynolds equation for thin film problems.The well-known Reynolds equation in the
continuum regime is [7]:

∂
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ρh3

µ
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= 6
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2
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)
,

whereh is the local gas bearing thickness,p the local pressure,ρ the local gas density,µ the
viscosity andU0 is the moving plate velocity.

In the slip regime the above equation needs modifications. Taking the Hsia’s second order
model, the boundary conditions are given as follows [9]:
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Ux1 , Ux2 : the velocity distributions.
τ : is the surface accommodation coefficient.
λ: is the mean free path,λ = 16

5
µ
P

√
RT
2π

(whereR is a gas constant,T is a local gas temperature

andP = p
pa

with pa is the ambient temperature).
For these boundary conditions, the velocity distributions are obtained by solving the momentum
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SECOND ORDER SLIP REYNOLDS EQUATION 3

equation [9]:

Ux1 =
1

2µ
· ∂p

∂x1

(
x2

3 − hx3 − hλ− λ2
)

+ U0

(
1− λ + x3

h + 2λ

)
,

Ux2 =
1

2µ
· ∂p

∂x2

(
x2

3 − hx3 − hλ− λ2
)
.

The second order modified Reynolds equation can hence be obtained by incorporating the
expressions ofUx1 andUx2 into the continuity equation and then integrating fromx3 = 0 to
x3 = h

∂(ρh)

∂t
+

1

2
· ∂(ρU0h)
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6
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.

Normally, the non-dimensional second order slip Reynolds equation (in the stationary regime)
is used which is given by [7]:

(1.1) ∇
[(

H3P + 6KnH
2 + 6K2

n

H

P

)
∇P

]
= Λ · ∇(PH),

Λ : is the bearing vector,H = h
h2

.

1.1.2. The Molecular Models.The mean free path is the average distance travelled by a mole-
cule between collision and is defined as:

(1.2) λ =
mean thermal speed
collision frequency

.

To obtain the mean free path, it is essential to calculate both the mean thermal speed and colli-
sion frequency, the terms in equation (1.2) depend on the molecular models used.

There exists three models: the (HS) Hard sphere model (equation (1.1)), the variable hard
sphere model (VHS) [2] and the (VSS) variable soft sphere [10]. If we take the (HS) model as
a reference, we can write a generalized mean free pathλ

′
for the three cases (HS, VHS, VSS)

whereλ
′
= ξλ such that

• ξ = 1 for the (HS) model;

• ξ =
Γ( 9

2
−$)
6

π
1
2
−$ for the (VHS) model;

• ξ =
αΓ( 9

2
−$)

(α+1)(α+2)
π

1
2
−$ for the (VSS) model,

whereα, $, Γ are determined by the type of gas and can be obtained from experimental data.
The non-dimensional modified Reynolds equation may be obtained as:

(1.3) ∇
[(

H3P + 6ξKnH
2 + 6ξ2K2

n

H

P

)
∇P

]
= Λ · ∇(PH).

In [4] Chipot and Luskin studied an analogous equation without the6ξ2K2 H
P

term, they proved
existence and uniqueness by using a change of the unknown function which leads to a new
problem in which the nonlinearity appears in the convection term.

The same proof technique does not work in our case due to the degenerate term6ξ2K2 H
P

,
which motivated our intention to search in this sense.

In this work we will prove existence and uniqueness of weak solutions of equation (1.3) using
a generalization of the Ky-Fan Lemma and preserving the idea of a new unknown function.
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2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

2.1. Existence. We consider the following problem (P):

(P)

{
∇

[(
H3P + 6ξKnH

2 + 6ξ2K2
n

H
P

)
∇P

]
= Λ.∇(PH), x = (x1, x2) ∈ Ω

P = Ψ in ∂Ω,

whereΩ is a region ofR2 with a smooth boundary∂Ω.
We assume that the functionsH : Ω → R andΨ : ∂Ω → R satisfy the following hypothesis:

(A1)


H ∈ W 1,∞(Ω)

H is bounded inW 1,∞(Ω) anda ≤ H(x) ≤ b a.e inΩ

with a, b are two positives constants

(A2)


Ψ is the restriction to∂Ω of a smooth functioñΨ defined onΩ

such that‖∇Ψ̃‖L2(Ω) ≤ M

with M is a positive constant.

We introduce the following set in order to give a variational formulation of (P):

V :=
{
u ∈ H1(Ω) ∩ L∞(Ω) / ∃α > 0 such thatu(x) ≥ α a.e inΩ

}
.

For the following, we denote by‖ · ‖ the norm inL2(Ω).

Definition 2.1. We say thatP is a weak solution of (P) if P − Ψ̃ ∈ H1
0 (Ω), P ∈ V and

(2.1)
∫

Ω

(
H3P + 6ξKnH

2 + 6ξ2K2
n

H

P

)
∇P · ∇v dx =

∫
Ω

PHΛ · ∇v dx ∀v ∈ H1
0 (Ω).

We prove the existence of a weak solution of (P) by using a change of the unknown function.
Let us write forP > 0,

(2.2)

(
H3P + 6ξKnH

2 + 6ξ2K2
n

H

P

)
∇P

= H3∇
(

P 2

2
+ 6ξKn

P

H
+ 6ξ2K2

n

log(P )

H2

)
+ 6ξKnPH∇H + 12ξ2K2

n log(P )∇H.

The new unknown function will be

(2.3) u =
P 2

2
+ 6ξKn

P

H
+ 6ξ2K2

n

log(P )

H2
.

We consider the functiong : ]0, +∞[ → R

g(t) =
t2

2
+ 6ξKnt + 6ξ2K2

n log(t).

It is easy to see thatg is an increasing and bijective function. We have from the above equality

(2.4) P =
1

H
κ(x, u),

with

(2.5) κ(x, u) = g−1
(
H2u + 6ξ2K2

n log H
)
.
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Our initial problem (P) becomes inu

(Pu)


∇ · (H3u) = ∇ · [(Λ− 6ξKn∇H) κ(x, u)− 12ξ2K2

n log κ(x, u)∇H]

+∇ · [12ξKn log H∇H] in Ω

u = Ψu =
Ψ2

2
+ 6ξKn

Ψ

H
+ 6ξ2K2

n

log(Ψ)

H2
in ∂Ω.

We set

Ψ̃u =
Ψ̃2

2
+ 6ξKn

Ψ̃

H
+ 6ξ2K2

n

log(Ψ̃)

H2
,

while keeping (due to (A2)) the fact that‖∇Ψ̃u‖ ≤ M1 (with M1 is a positive constant).

Definition 2.2. We say thatu is a weak solution of (Pu) if u− Ψ̃u ∈ H1
0 (Ω) and

(2.6)
∫

Ω

H3∇u.∇v dx =

∫
Ω

(Λ− 6ξKn∇H) κ(x, u)∇v dx

−
∫

Ω

12ξ2K2
n log κ(x, u)∇H∇v dx

+

∫
Ω

12ξKn log H∇H∇v dx ∀v ∈ H1
0 (Ω).

The equivalence between (P) and (Pu) is given by the following result.

Lemma 2.1. u is a weak solution of (Pu) if and only ifP, given by (2.4), is a weak solution of
(P).

Proof. It is clear from (2.2) that the two variational formulas are equivalent. And from (2.3) it
is obvious that ifP ∈ V thenu ∈ H1(Ω). It remains to show that ifu is a solution of (Pu) then
P ∈ V . From (2.4) we have thatP ∈ H1(Ω) since(g−1)′ is bounded. On the other hand, we
have classicallyu ∈ L∞(Ω). From (2.4) we deduce thatP belongs toL∞(Ω) with P bounded
away from0, and the proof is ended. �

Proposition 2.2. Under hypotheses (A1) and (A2), if we have

(2.7)
a3

Cpb2
(
‖Λ‖e

6ξKn
+ 3 ‖∇H‖

) > 1

(whereCp is the constant of Poincaré[3], ‖Λ‖e is the Euclidean norm ofΛ), then, for all
solutionz1 of the following inequality∫

Ω

H3∇
(
z1 + Ψ̃u

)
· ∇z1dx

≤
∫

Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1dx

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1dx +

∫
Ω

12ξKn log H∇H∇z1dx,

we have

(2.8) ‖∇z1‖ ≤ C.
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Proof. We have∫
Ω

H3∇
(
z1 + Ψ̃u

)
· ∇z1dx

≤
∫

Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1dx

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1dx +

∫
Ω

12ξKn log H∇H∇z1dx,

then∫
Ω

H3(∇z1)
2 ≤

∫
Ω

(Λ− 6ξKn∇H) κ(x, z1 + Ψ̃u)∇z1

−
∫

Ω

12ξ2K2
n log κ(x, z1 + Ψ̃u)∇H∇z1

+

∫
Ω

12ξKn log H∇H∇z1 −
∫

Ω

H3∇z1∇Ψ̃u.

Due to the fact that, for alls ∈ R,

0 ≤ dg−1

ds
(s) =

g−1(s)

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξKn

,(2.9)

0 ≤ d

ds
log(g−1(s)) =

1

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξ2K2
n

,

it follows that

a3 ‖∇z1‖2

≤ ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

[∥∥∥H2
(
z1 + Ψ̃u

)
+ 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 g−1(1)

]
‖∇z1‖

+ 2 ‖∇H‖∞
[∥∥∥H2

(
z1 + Ψ̃u

)
+ 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 log

(
g−1(1)

)]
‖∇z1‖

+ 12ξKn ‖log H∇H‖ ‖∇z1‖+ b3
∥∥∥∇Ψ̃u

∥∥∥ ‖∇z1‖ ,

i.e.(
a3 − ‖(Λ− 6ξKn∇H)‖∞

1

6ξKn

Cpb
2 − 2 ‖∇H‖∞ Cpb

2

)
‖∇z1‖

≤ ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

[∥∥∥H2Ψ̃u + 6ξ2K2
n log H − 1

∥∥∥ + |Ω|1/2 g−1(1)
]

+ 2 ‖∇H‖∞
[∥∥∥H2Ψ̃u + 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 log

(
g−1(1)

)]
+ 12ξKn ‖log H∇H‖+ b3

∥∥∥∇Ψ̃u

∥∥∥ ,

where|Ω| is the measure ofΩ.
However, if

a3

Cpb2
(
‖Λ‖e

6ξKn
+ 3 ‖∇H‖∞

) > 1,

hence (
a3 − ‖(Λ− 6ξKn∇H)‖∞

1

6ξKn

Cpb
2 − 2 ‖∇H‖∞ Cpb

2

)
> 0,
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then‖∇z1‖ ≤ C, where

C =
cte

a3 − ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn
Cpb2 − 2 ‖∇H‖∞ Cpb2

such that

cte = ‖(Λ− 6ξKn∇H)‖∞
1

6ξKn

[∥∥∥H2Ψ̃u + 6ξ2K2
n log H − 1

∥∥∥ + |Ω|1/2 g−1(1)
]

+ 2 ‖∇H‖∞
[∥∥∥H2Ψ̃u + 6ξ2K2

n log H − 1
∥∥∥ + |Ω|1/2 log

(
g−1(1)

)]
+ 12ξKn ‖log H∇H‖+ b3

∥∥∥∇Ψ̃u

∥∥∥ .

�

Now, we will prove the existence of a weak solution for the problem (Pu).

Proposition 2.3. If the hypotheses (A1), (A2) and (2.7) are verified then there exists at least one
weak solution for (Pu).

For the proof we need the following theorem:

Notation 2.1. We denote byF(X) the family of all non-empty finite subsets ofX and by
F(X, x0) all elements ofF(X) containingx0. We shall denote byconv(A) the convex hull of

A, by A
X

the closure ofA in X and byintX(A) the interior ofA in X.

Theorem 2.4. LetE be a topological vector space andX be a non-empty convex subset ofE;
Φ1, Φ2 : X ×X → R such that:

(1) Φ1(χ, q) ≤ Φ2(χ, q) for all χ, q ∈ X andΦ2(χ, χ) ≤ 0 for all χ ∈ X.
(2) For all A ∈ F(X) and all χ ∈ conv(A), q 7→ Φ1(χ, q) is lower semicontinuous on

conv(A).
(3) For all q ∈ X, the set{χ ∈ X, Φ2(χ, q) > 0} is convex.
(4) For all A ∈ F(X) and allχ, q ∈ conv(A) and for every net{qα} converging inX to q

with Φ1(tχ + (1− t)q, qα) ≤ 0 for all α and all t ∈ [0, 1] , we haveΦ1(χ, q) ≤ 0.
(5) There exists a non-empty closed and compactK ofX andx0 ∈ K such thatΦ1(x0, q) >

0 ∀q ∈ X\K.

Then there existsq ∈ K such thatΦ1(χ, q) ≤ 0 ∀χ ∈ X.

Remark 2.5. If the applicationq 7→ Φ1(χ, q) is lower semicontinuous onX for all χ ∈ X, then
the conditions (2) and (4) are verified.

Definition 2.3. [6]. T : X → 2E is said to be aKKM -application if for allA ∈ F(X),
conv(A) ⊆ ∪

χ∈A
T (χ).

First, we recall the following lemma that is a generalization of the Ky-Fan’s lemma.

Lemma 2.6. [5]. Let X a non-empty convex subset⊆ E (a topological vector space) and
T : X → 2E is a KKM-application, we suppose that there existsx0 ∈ X such that:

i) T (x0) ∩X
X

is compact onX.
ii) ∀A ∈ F(X, x0),∀χ ∈ conv(A), T (χ) ∩ conv(A) is closed inconv(A).

iii) ∀A ∈ F(X, x0), X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A) =

(
∩

χ∈conv(A)
T (χ)

)
∩ conv(A).

Then ∩
χ∈X

T (χ) 6= ∅.
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Proof of Theorem 2.4.We put for allχ ∈ X

T (χ) = {q ∈ X / Φ1(χ, q) ≤ 0} .

The condition (5) implies thatT (x0) ⊆ K , i.e. T (x0)
X

is compact onX.
The condition (2) implies that∀χ ∈ conv(A), T (χ) ∩ conv(A) is closed onconv(A).
Conditions (1) and (3) imply thatT is aKKM−application.
Indeed, let us suppose the opposite (T is not aKKM−application), then there existsA ∈ F(X)
and there existsq0 ∈ conv(A) such thatq0 /∈ ∪

χ∈A
T (χ), i.e. ∀χ ∈ A, Φ1(χ, q0) > 0. However

{χ ∈ X / Φ1(χ, q0) > 0} is convex, thenconv(A) ⊂ {χ ∈ X / Φ1(χ, q0) > 0}. Therefore
Φ1(q0, q0) > 0 by following Φ2(q0, q0) > 0 (which is absurd).

It remains to show that

X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A) =

(
∩

χ∈conv(A)
T (χ)

)
∩ conv(A), for all A ∈ F(X).

Let q ∈ X ∩ ( ∩
χ∈conv(A)

T (χ))
X
∩ conv(A), then there exists a sequence(qα) such thatqα → q

andqα ∈ X ∩ ( ∩
χ∈conv(A)

T (χ)). Howeverqα ∈ ∩
χ∈conv(A)

T (χ) implies thatΦ1(χ, qα) ≤ 0 for all

χ ∈ conv(A), i.e. Φ1(tχ + (1 − t)q, qα) ≤ 0, for all χ, q ∈ conv(A) and for all t ∈ [0, 1]

then (4) implies thatΦ1(χ, q) ≤ 0 for all χ ∈ conv(A) i.e. q ∈
(

∩
χ∈conv(A)

T (χ)

)
∩ conv(A).

By application of Lemma 2.6, there existsq ∈ K such thatq ∈ T (χ) ∀χ ∈ X, i.e. there exists
q ∈ K such thatΦ1(χ, q) ≤ 0 ∀χ ∈ X. �

Proof of Proposition 2.3.We make a translation for the unknown function to bring it to the
same space that functions test. Letw = u− Ψ̃u ∈ H1

0 (Ω), then we searchw ∈ H1
0 (Ω) such that

(2.10)
∫

Ω

H3∇w · ∇vdx =

∫
Ω

(Λ− 6ξKn∇H) κ1(x, w)∇vdx

−
∫

Ω

12ξ2K2
n log κ1(x, w)∇H∇vdx +

∫
Ω

12ξKn log H∇H∇vdx

−
∫

Ω

H3∇Ψ̃u · ∇v dx ∀v ∈ H1
0 (Ω),

with κ1(x, w) = κ(x, w + Ψ̃u).
Let us consider the spaceE := H1

0 (Ω) endowed with its weak topology and

X :=
{

ϕ ∈ E / ‖ϕ‖H1
0 (Ω) ≤ C + 1

}
(C is the constant given in Proposition 2.2). Consider the following applications:

Φ1(χ, q) := Φ2(χ, q) :=

∫
Ω

H3∇q∇(q − χ)dx−
∫

Ω

F (q)∇(q − χ)dx

such that

F (q) := (Λ− 6ξKn∇H) κ1(x, q)− 12ξ2K2
n log κ1(x, q)∇H

+ 12ξKn log H∇H −H3∇Ψ̃u

for all χ, q in H1
0 (Ω).

We will show that conditions of the theorem 2.4 are satisfied.
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Condition(1) is evidently satisfied. Since the applicationχ → Φ1(χ, q) is linear then condi-
tion (3) is also verified. For condition(5) it is sufficient to take

K := X =
{

ϕ ∈ E / ‖ϕ‖H1
0 (Ω) ≤ C + 1

}
.

According to Remark 2.5, it is sufficient to demonstrate that the applicationq 7→ Φ1(χ, q)
is weakly lower semicontinuous inH1

0 (Ω) to conclude that conditions(2) and(4) are satisfied.
Indeed, letqn ⇀ q in H1

0 (Ω), then there exists a subsequenceqnk
such thatqnk

→ q in L2(Ω) and
∇qnk

⇀ ∇q in L2(Ω). Therefore while using the Lebesgue dominated convergence theorem
and estimations (2.9), we have∫

Ω

a2F (qnk
)∇qnk

− χ =

∫
Ω

a2F (qnk
)∇qnk

−
∫

Ω

a2F (qnk
)∇χ

→
∫

Ω

a2F (q)∇q −
∫

Ω

a2F (q)∇χ.

For the other term ofΦ1(χ, qnk
) we have∫

Ω

H3.∇qnk
∇(qnk

− χ) =

∫
Ω

H3 · ∇qnk
∇qnk

−
∫

Ω

H3 · ∇qnk
∇χ.

However∇qnk
⇀ ∇q in L2(Ω), then

∫
Ω

H3 · ∇qnk
∇χ →

∫
Ω

H3 · ∇q∇χ. It remains to show
thatq 7→

∫
Ω

H3 · (∇qnk
)2 is weakly lower semicontinuous inH1

0 (Ω).
We consider the applicationT : L2(Ω) → R, z 7→

∫
Ω

H3 · z2 which is convex and strongly
semi continuous inL2(Ω) therefore weakly semi continuous inL2(Ω). However∇qnk

⇀ ∇q
in L2(Ω) thenlim (H3 · ((∇qnk)

2 − (∇q)2)) ≥ 0, from where we obtain the result.
By application of Theorem 2.4, there existsw ∈ K such thatΦ1(χ, w) ≤ 0 for all χ ∈ X,

howeverw ∈ intE(X) (according to Proposition 2.2), thenΦ1(χ, w) ≤ 0. In particular, for
χ = w + σ · ξ ∈ X, for all ξ ∈ D(Ω) andσ appropriately chosen, we deduct thatΦ1(ξ, w) = 0,
for all ξ ∈ H1

0 (Ω) (by density ofD(Ω) in H1
0 (Ω)) which implies that there existsw ∈ H1

0 (Ω)
satisfying the equation (2.10). �

It follows that we have solutions for the problems (Pu) and (P).

2.2. Uniqueness.In the next lemma we give a general monotonicity and uniqueness result for
a class of semi-linear elliptic problems.

Lemma 2.7. Let I ⊆ R and l : Ω × I → Rn an uniform Lipschitz function in the following
sense:

(2.11) ∃N > 0, |l(x, u1)− l(x, u2)| ≤ N |u1 − u2| , ∀x ∈ Ω andu1, u2 ∈ R.

Let j : Ω → R be a function satisfyingj(x) ≥ α0 > 0 a.e.x ∈ Ω. Suppose thatui, i = 1, 2, is
a weak solution to

(2.12)

 −∇ · (j(x)∇ui) = ∇ · l(x, ui), x ∈ Ω

ui = ϕi, x ∈ ∂Ω.

If ϕ1 ≥ ϕ2 a.e. on∂Ω, thenu1 ≥ u2 a.e. onΩ.

Proof. We takeu3 = u1 − u2 which satisfies the problem

(2.13)

 u3 ∈ ϕ1 − ϕ2 + H1
0 (Ω)∫

Ω
j(x)∇u · ∇vdx =

∫
Ω

(l(x, u1)− l(x, u2)) · ∇vdx.
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We have thatu+
3 ∈ H1

0 (Ω), so we can take (as in [8])v =
u+
3

u+
3 +δ

as a test function in (2.13) with

δ > 0, which gives

(2.14)
∫

Ω

j(x)∇u+
3 · ∇

(
u+

3

u+
3 + δ

)
dx =

∫
Ω

(l(x, u1)− l(x, u2)) · ∇
(

u+
3

u+
3 + δ

)
dx.

However

∇
(

u+
3

u+
3 + δ

)
= δ

∇u+
3(

u+
3 + δ

)2 , ∇ log

(
1 +

u+
3

δ

)
=

∇u+
3(

u+
3 + δ

) ,

which implies

(2.15)
∫

Ω

j(x)∇u+
3 · ∇

(
u+

3

u+
3 + δ

)
dx = δ

∫
Ω

j(x)

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣2 dx.

The right-hand side of (2.14) can be estimated as∣∣∣∣∫
Ω

(l(x, u1)− l(x, u2)) · ∇
(

u+
3

u+
3 + δ

)
dx

∣∣∣∣(2.16)

≤
n∑

i=1

∫
Ω

|li(x, u1)− li(x, u2)|
∣∣∣∣ ∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx

≤ N
n∑

i=1

∫
Ω

|u3|
∣∣∣∣ ∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx

= N
n∑

i=1

∫
Ω

∣∣∣∣u+
3

∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ dx.

However ∣∣∣∣u+
3

∂

∂xi

(
u+

3

u+
3 + δ

)∣∣∣∣ = δ

∣∣∣∣∣∂u+
3

∂xi

u+
3(

u+
3 + δ

)2

∣∣∣∣∣ ≤ δ

∣∣∣∣∂u+
3

∂xi

(
1

u+
3 + δ

)∣∣∣∣(2.17)

= δ

∣∣∣∣ ∂

∂xi

log

(
1 +

u+
3

δ

)∣∣∣∣ ≤ δ

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣ .

So, from (2.14) we obtain using also (2.15) – (2.17),

(2.18) α0

∫
Ω

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣2 dx ≤ N · n
∫

Ω

∣∣∣∣∇ log

(
1 +

u+
3

δ

)∣∣∣∣ dx.

Sincelog
(
1 +

u+
3

δ

)
∈ H1

0 (Ω), from the Poincaré inequality we deduce

(2.19)
∫

Ω

∣∣∣∣log

(
1 +

u+
3

δ

)∣∣∣∣2 dx ≤ C2,

whereC2 is independent onδ.
Then we haveu+

3 = 0 a.e.x ∈ Ω and the proof is ended. �

Proposition 2.8. Under the hypotheses (A1) and (A2), we have uniqueness among all weak
solutions of problem (P).

Lemma 2.9. We suppose thatui is a weak solution to (Pu) corresponding to the boundary data
Ψi

u, i = 1, 2. If Ψ1
u ≥ Ψ2

u a.e. on∂Ω, thenu1 ≥ u2 a.e. onΩ. Further, we have uniqueness
among all weak solutions of problem (Pu).
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Proof. We apply Lemma 2.7 withj = H3 and

l = (Λ− 6ξKn∇H) κ(x, u)− 12ξ2K2
n log κ(x, u)∇H + 12ξKn log H∇H.

Due to the fact that, for alls ∈ R,

0 ≤ dg−1

ds
(s) =

g−1(s)

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξKn

,

0 ≤ d

ds
log(g−1(s)) =

1

(g−1)2(s) + 6ξKng−1(s) + 6ξ2K2
n

≤ 1

6ξ2K2
n

and the fact thatH ∈ W 1,∞(Ω), the Lipschitz condition (2.11) is satisfied forl. �

Proof of Proposition 2.8.The proof is a consequence of Lemmas 2.1 and 2.9 and the fact that
g−1 is an increasing function. �
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