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ABSTRACT. In this paper we obtained existence and uniqueness results for the modified second
order slip Reynolds equation modeling the performance of the slider head floating over a rotating
disk inside a hard disk drive. The existence and the uniqueness are proved using the Ky-Fan’s
Lemma and some monotonicity techniques.
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1. INTRODUCTION

The advent of mini-fabrication and the ability to develop micro-machines for various appli-
cations have made micro-scale fluid dynamics increasingly important. In terms of application,
microelectromechanical systems are devices having characteristic length of micrometer or even
nanometer order. Microscale flows are found in micro-pumps and micro-turbines and in such
applications, the flow cannot be considered as a continuum. This involves the selection of an
appropriate model and boundary conditions. This deviation is measured by the Knudsen num-
ber(K,) (the ratio of the molecular mean free path and the film thickness). Normally, flow can
be classified into three categoriés [2];, < 102 the flow can be considered as a continuum;

K, > 10 the flow is considered to be a free molecular flaw;? < K,, < 10 the flow can
neither be a continuum flow nor a free molecular one.

The conventional Navier-Stokes equations are based on a continuum assumption and it is no
longer valid if the Kundsen number is beyond a certain limit [1]. A typical example is the case
of the slider head floating over a rotating disk inside a hard disk drive (HDD).
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Figure 1.1: Slider-bearing flow geometry

This type of thin-film problem has been approximated by the famous Reynolds equation
which is derived from the inertialess form of the Navier-Stokes equations combined with the
continuity equation. Appropriate modifications such as slip boundary conditions are the realm
of micro-fluid mechanics. Another approach is molecular-based models which are derived from
kinetic theories.

1.1. Reynolds Equation and Molecular Models.

1.1.1. Reynolds equation for thin film problem$he well-known Reynolds equation in the
continuum regime is |7]:

0 (ph* Op L0 PR Op N _ 5 9loh)  9(pUoh)
Oxy \ pu Oxy Oxa \ p O0xs) ot 011 ’

whereh is the local gas bearing thicknegsthe local pressure; the local gas density, the
viscosity and’, is the moving plate velocity.

In the slip regime the above equation needs modifications. Taking the Hsia’s second order
model, the boundary conditions are given as follows [9]:
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U, (25 = ) = — T)\aUQ __(9U22 .
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U.,, U,, : the velocity distributions.

7. is the surface accommodation coefficient.
A: is the mean free path, = %%« /?—f (whereR is a gas constant, is a local gas temperature
andP = £ with p, is the ambient temperature).

For these aboundary conditions, the velocity distributions are obtained by solving the momentum
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SECOND ORDER SLIP REYNOLDS EQUATION 3

equation|[[9]:

1 0p 2 2 )\+.133
= .= — haa — - 1—-—
U, % Do, (23 — has — hA — X°) + Uy o)

1 Op
Uy = 5y (33— has = 1A = 7).

The second order modified Reynolds equation can hence be obtained by incorporating the
expressions ot/,, andU,, into the continuity equation and then integrating fream= 0 to
T3 = h

olph) 1 0(pUsh)

8t 2 8381
R N NI a1aph322
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Normally, the non-dimensional second order slip Reynolds equation (in the stationary regime)
is used which is given by [7]:

(1.1) v KH?’P + 6K, H* + 6K§%) VP} =A-V(PH),

A :is the bearing vectot! = -

1.1.2. The Molecular ModelsThe mean free path is the average distance travelled by a mole-
cule between collision and is defined as:

_ mean thermal speed
~ collision frequency

To obtain the mean free path, it is essential to calculate both the mean thermal speed and colli-
sion frequency, the terms in equatipn (1.2) depend on the molecular models used.

There exists three models: the (HS) Hard sphere model (equftidn (1.1)), the variable hard
sphere model (VHS) [2] and the (VSS) variable soft sphere [10]. If we take the (HS) model as
a reference, we can write a generalized mean free pdtr the three cases (HS, VHS, VSS)
where) = ¢ such that

e ¢ = 1 for the (HS) model;
o (= o3 )m—w for the (VHS) model;

o (= % 2=% for the (VSS) model,
wherea, w, I" are determined by the type of gas and can be obtained from experimental data.

The non-dimensional modified Reynolds equation may be obtained as:

(1.2)

(1.3) \Y, KH?’P + 66K, H? + 662 K2 — il > VP} A-V(PH).

In [4] Chipot and Luskin studied an analogous equation withouﬁgﬁéﬂ’% term, they proved
existence and uniqueness by using a change of the unknown function which leads to a new
problem in which the nonlinearity appears in the convection term.

The same proof technique does not work in our case due to the degenera@%ﬁﬁ%,
which motivated our intention to search in this sense.

In this work we will prove existence and uniqueness of weak solutions of equatipn (1.3) using
a generalization of the Ky-Fan Lemma and preserving the idea of a new unknown function.
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2. EXISTENCE AND UNIQUENESS OF SOLUTIONS
2.1. Existence. We consider the following problerfP):
V [(H3P + 66K,H? + 62 K2Z) VP| = AV(PH), z = (z1,22) € Q
(P)
P =Y inoQ,

where() is a region ofR? with a smooth boundar§<).
We assume that the functios: 2 — R andV : 02 — R satisfy the following hypothesis:

H e Wh>=(Q)
(A) H is bounded id¥V1>(Q) anda < H(x) < ba.e inQ

with a, b are two positives constants

U is the restriction t@$ of a smooth function? defined orf
(A2) such thal| V| 2 () < M

with M is a positive constant.
We introduce the following set in order to give a variational formulatiorfF (
V={ue H(Q)NL®) /3o > 0 such thatu(z) > a a.e inQ} .
For the following, we denote bl || the norm inL?(Q).

Definition 2.1. We say thatP is a weak solution o@ if P—W e H}(Q), P eV and

H
(2.1) / (H3P + 66K, H? + 6§2KZF) VP -Vvdr = / PHA -Vvdr Vv e Hy(Q).
Q Q

We prove the existence of a weak solutionBj Py using a change of the unknown function.
Let us write forP > 0,

(2.2) (H3P + 66K, H? + 6§2be%) VP
P? P log(P)
— H3 - K 2K2—
V(2+6§ nH+6£ "3 )

+ 66K, PHVH + 1262 K2 1og(P)V H.

The new unknown function will be

p? P log(P)
2.3 = K,— 2K2 .
(23) w= o 66K, o+ 68K =
We consider the functiof : |0, +oo[ — R

2

t
g(t) = 5 + 6K+ 662 K2 log(t).

It is easy to see thatis an increasing and bijective function. We have from the above equality

(2.4) P = %n(m, u),
with
(2.5) k(z,u) =g ' (Hu+ 68K log H) .
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Our initial problem [P) becomes in
V- (Hu) = V-[(A=66K,VH)k(x,u) — 1282 K2 log k(x,u)VH]
+V - [12¢K, log HVH] in{}

(Pu)
w2 1\ log(V) .
- = K, — 2K2 in 0.
We set
~ U2 v log (W)
U, = — K,— 2K2

while keeping (due t) the fact thaﬂ]V\Tqu < M, (with M, is a positive constant).

Definition 2.2. We say that: is a weak solution o@ if u— U, € H}(Q) and
(2.6) /Q H*Vu.Vv dr = /Q (A — 66K, VH) k(z,u)Vov dv
—/912§QK,2L log k(x,u)VHVv dz
- /Q 126K, log HVHVv do  Yv € Hy(Q).

The equivalence betwed®) and is given by the following result.

Lemma 2.1. « is a weak solution of®,) if and only if P, given by [(2.14), is a weak solution of
(P).

Proof. It is clear from [(2.) that the two variational formulas are equivalent. And ffon (2.3) it
is obvious that if? € V thenu € H'(Q). It remains to show that if is a solution of[P,) then

P € V. From [2.4) we have that € H'(Q) since(¢~!)’ is bounded. On the other hand, we
have classically. € L>(f2). From [2.4) we deduce thdt belongs toL>*(£2) with P bounded
away from0, and the proof is ended. O

Proposition 2.2. Under hypothese§4) and [4,), if we have

a3

(2.7) > 1
Co? (ke + 3|V H] )

GEK”

(where C,, is the constant of Poincarf8], ||A||, is the Euclidean norm of), then, for all
solutionz; of the following inequality

/ H3V <21 + \T/u> - Vzidx
Q
< / (A — 66K, VH) k(x, 2 + ¥,)Vzda
Q
- / 1262K21og k(z, 21 + V,)VHV zdx + / 12¢K, log HVHV zdx,
Q Q

we have

(2.8) [Va| < C.
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Proof. We have
/ H3V <21 + {Iv/u> - Vzidx
Q
< / (A — 66K, VH) k(z, 21 + ¥,)Vzda
Q

- / 1262 K2 log k(x, 21 + W, ) VHV z1da + / 12¢K,, log HVHV 2z dx,
Q Q
then

/ H3(Vz)? < / (A — 66K, VH) k(x, 21 + ¥,)Vz
Q Q
- / 1262 K2 log k(, 21 + W, ) VHV 2,
Q

+ / 126K, log HVHV 2, — / H3V % VU,
Q Q

Due to the fact that, for al € R,

dg*

(2.9) 0< Y (5)= g _(s) -

(9 12(s) + 66Kg(5) + 6E2K2 = 66K,
1 1
(0 D2(s) 1 66K, g 1(s) + 662K = 662K

0< los(y™(s)) =

it follows that

a* ||V |*

< (A — 66K, VH)| [HH? <21+\IJ ) +6¢ K21ogH—1H 1029711 )} V2|

0 65K
2 |VH|, H)H? (21 4+ W) + 662 K2 log H 1H 10 1og (97 (1) | V1]

Y 126K, |[log HVH| |V | + 6 ’

i.e.

(a?’— 1A = 6e K,V H)| _2||vH] CbZ) 1V

00 6§K

< |I(A — 66K, VH)]| [HH?@ + 662K log H — 1H+yml/2 g7 (1)

o0 65[(
+2||VH]|, [HH?@U 462K log H — 1” + 192 1og (g7 (1))}

4 126K, ||log HVH|| + b ]

where|()| is the measure db.

However, if

CL3

G (e + 31V AL,

> 1,

hence

(a3—\|<A—6fKnVH>H 2|, CbZ)

~ 6K,
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SECOND ORDER SLIP REYNOLDS EQUATION 7

then||Vz || < C, where

- cte
T @ [[(A = 6K,V H) | g Cob? — 2[[VH] G2
such that
1 ~ _
cte = |(A ~ 66K, VI e |29 + 662K 2108 1 1 + 10172 g7 (1)]

2| VH|. [HHQ\T/U 4 6E2 K2 log H — 1H 10" log (7 (1))]

0

126K, |[log HVH| + b HV\T/U

Now, we will prove the existence of a weak solution for the probl@f)

Proposition 2.3. If the hypothese§A)), and [2.7) are verified then there exists at least one
weak solution for[P,).

For the proof we need the following theorem:

Notation 2.1. We denote byF(X) the family of all non-empty finite subsets of and by
F(X,xo) all elements ofF (X)) containingz,. We shall denote byonv(A) the convex hull of

A, byZX the closure ofd in X and byintx (A) the interior ofA in X.

Theorem 2.4. Let E be a topological vector space arid be a non-empty convex subsetof
®1, P, : X x X — R such that:
(1) P1(x,q) < Pa(x,q) forall x,q € X andP,(x, x) < 0forall y € X.
(2) Forall A € F(X) and all x € conv(A), ¢ — P1(x,q) is lower semicontinuous on
conv(A).
(3) Forall ¢ € X, thesef{x € X, ®3(x,q) > 0} is convex.
(4) Forall A € F(X) andall x, q € conv(A) and for every ne{q,} converging inX to ¢
with @ (tx + (1 — t)g,q,) < 0forall « and allt € [0, 1], we haved,(x, ¢) < 0.
(5) There exists a non-empty closed and compacf X andx, € K such thatd,(xg,q) >
0Vq € X\K.
Then there existg € K such thatd,(y,g) < 0Vy € X.

Remark 2.5. If the applicationy — ®4(, q) is lower semicontinuous oN for all y € X, then
the conditions (2) and (4) are verified.

Definition 2.3. [6]. 7' : X — 2% is said to be ak K M-application if for allA € F(X),
A)C UT(x).
conv(4) € U T(x)
First, we recall the following lemma that is a generalization of the Ky-Fan’s lemma.

Lemma 2.6. [5]. Let X a non-empty convex subset £ (a topological vector space) and
T : X — 2F is a KKM-application, we suppose that there exigtsc X such that:

) T'(zg) N X' is compact onX.

i) VA € F(X,x0),Vx € conv(A), T(x) N conv(A) is closed inconv(A).

i) VAe F(X,z0),XN( N T(X))X N conv(A) = ( N T(X)) N conv(A).

Xx€Econv(A) Xx€Econv(A)

ThenXQXT(X) # 0.
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http://jipam.vu.edu.au/

8 KHALID AIT HADI AND MY HAFID EL BANSAMI

Proof of Theorer 2]4wWe put for ally € X
T(x) ={g€ X/ Pi(x,q) <0},

The condition (5) implies thaf'(zy) C K , i.e. T(xo)X is compact onX.

The condition (2) implies thaty € conv(A), T'(x) N conv(A) is closed orconv(A).
Conditions (1) and (3) imply thaf' is a K K M —application.

Indeed, let us suppose the oppositeg not ak’ K M —application), then there exists € F(X)
and there existg, € conv(A) such thaty ¢ XLEJAT(X), i.e. ¥y € A, ®1(x,q) > 0. However

{x € X/ ®1(x,q) > 0} is convex, therconv(A) C {x € X / ®1(x,q) > 0}. Therefore
®4(qo, qo) > 0 by following ®5(qo0, 90) > 0 (which is absurd).
It remains to show that

Xn( N _TO)) Neonv(A) = ( N T(X)) N conv(A), forall A e F(X).

x€conv(A) x€conv(A)

Letge XN( N T(X))X N conv(A), then there exists a sequeneg) such thay, — ¢

X€Econv(A)
andg, € XN( N T(x)). Howeverg, € N T(x) implies thatd,(x,q,) < 0 for all
xEconv(A) XEconv(A)

X € conv(A), i.e. 1(tx + (1 —t)q,q.) < 0, for all x,q € conv(A) and for all ¢t € [0, 1]
then (4) implies tha®;(x, ¢) < 0 for all x € conv(A)i.e.q € N T(X)) N conv(A).

XxEconv(A)
By application of Lemma 2|6, there exigtss K such thag € T'(x) Vx € X, i.e. there exists
g € K such that,(y,q) < 0Vy € X. O

Proof of Propositiot 23We make a translation for the unknown function to bring it to the
same space that functions test. ket u — U, € H} (), then we search € H}(Q2) such that

(2.10) /H3Vw-Vvdx:/(A—6§KnVH) k1(z, w)Vodx
Q Q
—/12§2K210g/i1(x,w)VHVvdx+/12§KnlogHVHV'de
Q 0
—/H?’V\T/u-Vv dr Vv € HL (),
Q

with k1 (z, w) = k(z, w + V).
Let us consider the spade:= H](2) endowed with its weak topology and

Xi={peE/ lollyye < C+1}
(C is the constant given in Propositipn 2.2). Consider the following applications:
D1(x, q) == Palx, q) == / H°VqV (g — x)dz — / F(q)V(q — x)dx
Q Q
such that

F(q) = (A= 66K, VH) ki(x,q) — 126° K2 log Ky (7, q)VH
+12¢K, log HVH — H*VU,

for all x, qin H ().
We will show that conditions of the theorém 2.4 are satisfied.
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Condition(1) is evidently satisfied. Since the applicatipn— ®1(x;, ¢) is linear then condi-
tion (3) is also verified. For conditio(b) it is sufficient to take

Ki=X={4p€E/ |pllym<C+1},

According to Remark 2|5, it is sufficient to demonstrate that the applicatien ®:(x,q)

is weakly lower semicontinuous iH} () to conclude that condition®) and(4) are satisfied.
Indeed, ley;,, — ¢ in H (), then there exists a subsequengesuch thaty,, — ¢in L*(Q2) and

V., — Vqin L?(Q). Therefore while using the Lebesgue dominated convergence theorem
and estimationg (2.9), we have

/a2F(an)ank —Xz/agF(an)ank —/CLQF(an)VX
Q Q Q

= /Q asF(q)Vq — /Q a2 F'(q)Vx.

For the other term ob (x, ¢,,, ) Wwe have

/ HSVanV(an - X) = / H? - VanVan - / H? - vanvX'
Q Q Q

HoweverVy,, — Vqin L*(Q), then [, H* - V¢, Vx — [, H? - V¢Vx. It remains to show
thatq — [, H® - (Vq,,)? is weakly lower semicontinuous i ().

We consider the applicatidfi : L*(Q) — R, z — [, H® - 2* which is convex and strongly
semi continuous ir.?(Q2) therefore weakly semi continuous iit(2). HoweverVg,, — Vq
in L?(Q) thenlim (H? - ((Vgu)® — (Vg)?)) > 0, from where we obtain the result.

By application of Theorerp 2.4, there existse K such thatd;(x,w) < 0 forall x € X,
howeverw € intg(X) (according to Proposition 2.2), the (x,w) < 0. In particular, for
x=w+o-§ € X, forall (£ € D(Q2) ando appropriately chosen, we deduct tdat ¢, w) = 0,
for all ¢ € H}(Q) (by density of D(Q2) in Hj(©2)) which implies that there exists € H} ()
satisfying the equatiof (2.]10). O

It follows that we have solutions for the probler{f3,Jf and [P).

2.2. Unigueness.In the next lemma we give a general monotonicity and uniqueness result for
a class of semi-linear elliptic problems.

Lemma 2.7.Let] C Rand!/ : Q x I — R™ an uniform Lipschitz function in the following
sense:

(2.12) AN >0, [l(z,uq) — l(z,uz)| < Nug —ug|, Vo € Qanduy,us € R.

Letj : © — R be a function satisfying(z) > oy > 0 a.e.x € . Suppose that;, : = 1,2, is
a weak solution to

-V (j(@)Vu;) =V - l(z,u;), v €
(2.12)
U; = i, T € 09.

If o1 > @y a.e. 002, thenu; > u, a.e. onf).
Proof. We takeus; = u; — up which satisfies the problem

uz € p1 — 2 + Hy ()
(2.13)
Joi(@)Vu - Vude = [, (I(z,ur) — (2, u2)) - Vode.

J. Inequal. Pure and Appl. Mathb(2) Art. 50, 2004 http://jipam.vu.edu.au/
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We have thati; € H}(f2), so we can take (as inl[8]) = (2.13) with

0 > 0, which gives

. u+ u+
(2.14) /Qj(m)vu;f v, (u; i 5) dr = /Q (l(z,ur) — Uz, uz)) - V (u?{ j_ 5) d.

However . . . .
v( 8 ):5 Vi . v1og(1+“—3)zfi,
Uz 0 (ug +9) 0 (ug +9)

which implies

2

+
(2.15) /j(x)vu; Y ( ) dr = 5/ )|V 1og (1 + “73) dz.
Q
The right-hand side of (2.14) can be estimated as
u+
(2.16) /Q(l(:c,ul) —(x,u9)) - V <u; 3+ 5) d:z:‘
0 g
< Li( — 3 d
Z/| x,uy) — li(x, ug) &Ei(u;{—i—é) x
_l’_
<N d
Z/ [us| &rz (u3 +5) o
dx.
Ti (U3 "’5)‘
However
9, ud oud  uf oud 1
2.17 iy —2 )| = 3 3 <=2
e (u;w)‘ 02i (ug +0)7| =" 0u (u;w)‘

0 Us Ug
—5‘ xilog(l—i—a)' 5‘V10g<1—|—6

So, from [2.14) we obtain using algo (2.15] - (2.17),
u+
Vlog (1 + 73)

+ 2
(2.18) ao/ V log <1+u—3) dr < N~n/
Q 0 Q

Sincelog (1 + %) € Hj (), from the Poincaré inequality we deduce

(2.19) /Q log (1 + %)

where(Cs is independent on.
Then we haved = 0 a.e.z € Q and the proof is ended. O

dz.

2

dx S 027

Proposition 2.8. Under the hypotheseBi() and [4,), we have uniqueness among all weak
solutions of problenjR).

Lemma 2.9. We suppose that; is a weak solution tgR,]) corresponding to the boundary data
Uloi=1,2.1f ¥l > U2 ae. ondN, thenu; > uy a.e. onQ. Further, we have uniqueness
among all weak solutions of problefR.f).
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Proof. We apply Lemma 2|7 with = H* and
| =(A—66K,VH) k(z,u) — 1262 K2 log k(z,u)VH + 126K, log HV H.
Due to the fact that, for ald € R,

—1 -1
0<% (s) = 9 (s) <
ds (g71)%(s) + 6EKng~"(s) + 662 K7 — GEK,
d 1 1
< —log(g7'(s)) = <
0= GO = G e, 1) ¢ 6eR? = 62K
and the fact that/ € W'*(Q), the Lipschitz condition(2.11) is satisfied for O
Proof of Proposition 2J8The proof is a consequence of Lemmag 2.1[and 2.9 and the fact that
g~1'is an increasing function. O
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