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ABSTRACT. Let S, be the von Neumann-Schatten ideal of compact operators in a separable
Hilbert space. In the paper, upper and lower bounds for the regularized determinants of operators
from S, are established.
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1. UPPER BOUNDS

For an integep > 2, let S, be the von Neumann-Schatten ideal of compact operatons
a separable Hilbert space with the finite noWp(A) = [Trace(AA*)?/2]}/P where A* is the
adjoint. Recall that for aal € S, the regularized determinant is defined as

det,(A) := [ J(1 = A;(A)) exp [Z AP (A)

m

j=1 m=1

where);(A) are the eigenvalues of with their multiplicities arranged in decreasing order.
The inequality

(1.1) det,(A) < exp[qug(A)]

is well-known, cf. [2, p. 1106],14, p. 194]. Recall thiatet,(A)| < eN2(4/2, cf. [B, Section
IV.2 ]. However, to the best of our knowledge, the consignfor p > 2 is unknown in the
available literature although it is very important, in particular, for perturbations of determinants.
In the present paper we suggest bounds;fafp > 2). In addition, we establish lower bounds
for det,(A). As far as we know, the lower bounds have not yet been investigated in the available
literature.

Our results supplement the very interesting recent investigations of the von Neumann-Schatten
operatorsl[d1, 3,18,/19, 10]. In connection with the recent results on determinants, the paper [6]
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should be mentioned. It is devoted to higher order asymptotics of Toeplitz determinants with
symbols in weighted Wienar algebras.
To formulate the main result we need the algebraic equation

p—3 2
1+
mX::lm+2

Below we prove that it haa unique positive roat, < 1. Moreover,

(1.2) 2P7? = p(1 — ) (p > 2).

p
1.3 < 2 .
( ) To = P + 1
Theorem 1.1.LetA € S, (p =3,4,...). Then inequality[(1]1) holds with
1
T =)

The proof of this theorem is divided into a series of lemmas presented below.
Lemma 1.2. Equation [(1.2) has a unique positive rogf < 1.
Proof. Rewrite [1.2) as

Clearly,¢(0) = —1, g(z) — +o00 asz — 1 — 0. So [1.2) has at least one root frafh 1). But
from (1.2) it follows that a root fronfl, co) is impossible. Moreover] (1.2) is equivalent to the

equation

1 1 L gmer

p(l—z) ap2 —~ m

The left part of this equation increases and the right part decreasgs on So the positive
root is unique. O

Furthermore, consider the function

_1 m

In(1—2)+ Z—] (z€C; p>2).
m

1

bS]

f(z) :=Re

3
I

Clearly,
o0 Zm
2) = —RezE (Jz| < 1).
m=p

Lemma 1.3. Letw € (0,1). Then

rp
z r=lz<w
|/ )|_p(1—w) (r=lz] <w)
Proof. Clearly,
fI< ), —  (r<l)
m=p
Consequently,
0 T D ldS
< m— 1d _ p—1 kd :/ S
| /Z s = /5 Zs s 1o
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Hence we get the required result. O

Lemma 1.4. For anyw € (0,1) and all z € C with |z| > w, the following inequality is valid:

=1
1£(2)] < hy(w)r?  where h,(w) =w? |w®+ Z %] (p>2).
m=3

Proof. Take into account that
(1 —2)e?)? = (1 — 2Rez + r?)e? < e 2Rest2Rez — o (5 € (),

sincel +x < e*,z € R. So

p—1 om p—1 rm
1- < 2 —
( z) exp [mlm <exp |r +7§:3m]
Therefore,
p—1 P
<r? — eC
FEI<rt 3T (eO
But
p—1 )
r? + —] r P <h,(w) (r>w)
m=3 m
This proves the lemma. O

Lemmag 1.3 and 1.4 imply
Corollary 1.5. One has

lf(2)] < gr? (€ C,p>2) where §,:= min max {hp(w), ;} .

we(0,1) p(1 —w)
However, functiom,(w) decreases i € (0,1) andm increases. So the minimum in
the previous corollary is attained when
1
hy(w) = ———.
»(®) p(1 —w)

This equation is equivalent tp (1.2). §p= ¢, and we thus get the inequality
(1.4) F(2) < gr” (2€C).

Lemma1.6.LetA € S,,p > 2. Thendet,(A) < exp|g,w,(A)] where

wy(A) =) (AP
k=1
Proof. Due to [1.4),

det,(A4) < Heqplkj(A)\P < exp [Z Bl (A)P
k=1

j=1

As claimed. O
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Proof of Theorer 1]1The assertion of Theorem 1.1 follows from the previous lemma and the
inequality

> NP < NE(4)
k=1
cf. [5]. O
Furthermore, from[(1]2) it follows that

since

This proves inequality (1]3). Thus

Ip < :
p(1= /i)
Note that if the spectral radius(A) of A is less than one, then according to Lenima 1.3 one

can take )

TPy
Corollary 1.7. LetA, B € S, (p > 2). Then
| dety(A) — det,(B)| < Np(A = B) explgy(1 + Np(A) + Np(B))"].

Indeed, this result is due to Theorém|1.1 and the theorem by Seiler and $imon [7] (see also
[4), p. 32)]).

2. LowER BOUNDS

In this section for brevity we put;(A4) = ;. Denote byL a Jordan contour connecting
and1, lying in the disc{z € C : |z| < 1}, not containing the pointsl/\; for any eigenvalue
A;, such that
(21) ¢A = inf |1 — S)\k’ > 0.

s€L; k=1,2,...
Let! = |L| be the length of.. For example, ifA does not have eigenvalues finco), then
one can takd, = [0, 1]. In this casd = 1 and¢, = infy sco1) |1 — sAi|. If r(A) < 1, then
= 1,¢A Z 1—7“5(14).

Theorem2.1.LetA e S, (p =2,3,...),1 &€ o(A) and condition[(2./l) hold. Then
INP(A)

[det,(A)] > ¢ s

Proof. Consider the function

D(z) = ﬁGj(z) where G;(z) := (1 — z)\;)exp [ j

Clearly,
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and
p—2 p Zm)\m
Gi(2) = | =N + (1= 2))) Z 2PN exp Z m] :
m=0 m=1
But
p—2
N (L= 2Xy) Y2 = T
m=0
since
— m.m - (Z)\j)p_l
AT TN
m=0 J
So

P omam] N
Gi(2) = —zp_l)\§ exp [Z J ] =— LG (2).

— m 1—2z\;

Hence,D'(z) = h(z)D(z), where

p—1 - /\Il;
h(Z) = —Z Z ]_——ZAk

Consequently,
D(1) = det,(A) = exp {/L h(s)ds} :

But|s| < 1foranys € L and thus

/ds

g|p—1 d

Therefore,
|det,(A)| = |exp {/ h(s)ds]” > exp {— /h(s)ds ] > exp[—w,(A)ld,'].
L L
This proves the theorem. O
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