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ABSTRACT. Let Sp be the von Neumann-Schatten ideal of compact operators in a separable
Hilbert space. In the paper, upper and lower bounds for the regularized determinants of operators
from Sp are established.
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1. UPPER BOUNDS

For an integerp ≥ 2, let Sp be the von Neumann-Schatten ideal of compact operatorsA in
a separable Hilbert space with the finite normNp(A) = [Trace(AA∗)p/2]1/p whereA∗ is the
adjoint. Recall that for anA ∈ Sp the regularized determinant is defined as

detp(A) :=
∞∏

j=1

(1− λj(A)) exp

[
p−1∑
m=1

λm
j (A)

m

]
whereλj(A) are the eigenvalues ofA with their multiplicities arranged in decreasing order.

The inequality

(1.1) detp(A) ≤ exp[qpN
p
p (A)]

is well-known, cf. [2, p. 1106], [4, p. 194]. Recall that| det2(A)| ≤ eN2
2 (A)/2, cf. [5, Section

IV.2 ]. However, to the best of our knowledge, the constantqp for p > 2 is unknown in the
available literature although it is very important, in particular, for perturbations of determinants.
In the present paper we suggest bounds forqp (p > 2). In addition, we establish lower bounds
for detp(A). As far as we know, the lower bounds have not yet been investigated in the available
literature.

Our results supplement the very interesting recent investigations of the von Neumann-Schatten
operators [1, 3, 8, 9, 10]. In connection with the recent results on determinants, the paper [6]
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should be mentioned. It is devoted to higher order asymptotics of Toeplitz determinants with
symbols in weighted Wienar algebras.

To formulate the main result we need the algebraic equation

(1.2) xp−2 = p(1− x)

[
1 +

p−3∑
m=1

xm

m + 2

]
(p > 2).

Below we prove that it hasa unique positive rootx0 < 1. Moreover,

(1.3) x0 ≤ p−2

√
p

p + 1
.

Theorem 1.1.LetA ∈ Sp (p = 3, 4, . . . ). Then inequality (1.1) holds with

qp =
1

p(1− x0)
.

The proof of this theorem is divided into a series of lemmas presented below.

Lemma 1.2. Equation (1.2) has a unique positive rootx0 < 1.

Proof. Rewrite (1.2) as

g(x) :=
xp−2

p(1− x)
−

(
1 +

p−1∑
m=3

xm−2

m

)
= 0.

Clearly,g(0) = −1, g(x) → +∞ asx → 1− 0. So (1.2) has at least one root from(0, 1). But
from (1.2) it follows that a root from[1,∞) is impossible. Moreover, (1.2) is equivalent to the
equation

1

p(1− x)
=

1

xp−2
+

p−1∑
m=3

xm−p

m
.

The left part of this equation increases and the right part decreases on(0, 1). So the positive
root is unique. �

Furthermore, consider the function

f(z) := Re

[
ln(1− z) +

p−1∑
m=1

zm

m

]
(z ∈ C; p > 2).

Clearly,

f(z) = −Re
∞∑

m=p

zm

m
(|z| < 1).

Lemma 1.3. Letw ∈ (0, 1). Then

|f(z)| ≤ rp

p(1− w)
(r ≡ |z| < w).

Proof. Clearly,

|f(z)| ≤
∞∑

m=p

rm

m
(r < 1).

Consequently,

|f(z)| ≤
∫ r

0

∞∑
m=p

sm−1ds =

∫ r

0

sp−1

∞∑
k=0

skds =

∫ r

0

sp−1ds

1− s
.
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Hence we get the required result. �

Lemma 1.4. For anyw ∈ (0, 1) and all z ∈ C with |z| ≥ w, the following inequality is valid:

|f(z)| ≤ hp(w)rp where hp(w) = w−p

[
w2 +

p−1∑
m=3

wm

m

]
(p > 2).

Proof. Take into account that

|(1− z)ez|2 = (1− 2 Re z + r2)e2x ≤ e−2 Re z+r2

e2 Re z = er2

(z ∈ C),

since1 + x ≤ ex, x ∈ R. So∣∣∣∣∣(1− z) exp

[
p−1∑
m=1

zm

m

]∣∣∣∣∣ ≤ exp

[
r2 +

p−1∑
m=3

rm

m

]
.

Therefore,

|f(z)| ≤ r2 +

p−1∑
m=3

rm

m
(z ∈ C).

But [
r2 +

p−1∑
m=3

rm

m

]
r−p ≤ hp(w) (r ≥ w).

This proves the lemma. �

Lemmas 1.3 and 1.4 imply

Corollary 1.5. One has

|f(z)| ≤ q̃pr
p (z ∈ C, p > 2) where q̃p := min

w∈(0,1)
max

{
hp(w),

1

p(1− w)

}
.

However, functionhp(w) decreases inw ∈ (0, 1) and 1
p(1−w)

increases. So the minimum in
the previous corollary is attained when

hp(w) =
1

p(1− w)
.

This equation is equivalent to (1.2). Soq̃p = qp and we thus get the inequality

(1.4) |f(z)| ≤ qpr
p (z ∈ C).

Lemma 1.6. LetA ∈ Sp, p > 2. Thendetp(A) ≤ exp[qpwp(A)] where

wp(A) :=
∞∑

k=1

|λk(A)|p.

Proof. Due to (1.4),

detp(A) ≤
∞∏

j=1

eqp|λj(A)|p ≤ exp

[
∞∑

k=1

qp|λj(A)|p
]

.

As claimed. �
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Proof of Theorem 1.1.The assertion of Theorem 1.1 follows from the previous lemma and the
inequality

∞∑
k=1

|λj(A)|p ≤ Np
p (A)

cf. [5]. �

Furthermore, from (1.2) it follows that

xp−2
0 ≤ p(1− x0)

p−3∑
m=0

xm
0 = p(1− xp−2

0 )

since
p−3∑
m=0

xm
0 =

1− xp−2
0

1− x0

.

This proves inequality (1.3). Thus

qp ≤
1

p
(
1− p−2

√
p

p+1

) .

Note that if the spectral radiusrs(A) of A is less than one, then according to Lemma 1.3 one
can take

qp =
1

p(1− rs(A))
.

Corollary 1.7. LetA, B ∈ Sp (p > 2). Then

| detp(A)− detp(B)| ≤ Np(A−B) exp[qp(1 + Np(A) + Np(B))p].

Indeed, this result is due to Theorem 1.1 and the theorem by Seiler and Simon [7] (see also
[4, p. 32]).

2. L OWER BOUNDS

In this section for brevity we putλj(A) = λj. Denote byL a Jordan contour connecting0
and1, lying in the disc{z ∈ C : |z| ≤ 1}, not containing the points1/λj for any eigenvalue
λj, such that

(2.1) φA := inf
s∈L; k=1,2,...

|1− sλk| > 0.

Let l = |L| be the length ofL. For example, ifA does not have eigenvalues on[1,∞), then
one can takeL = [0, 1]. In this casel = 1 andφA = infk,s∈[0,1] |1 − sλk|. If rs(A) < 1, then
l = 1, φA ≥ 1− rs(A).

Theorem 2.1.LetA ∈ Sp (p = 2, 3, . . . ), 1 6∈ σ(A) and condition (2.1) hold. Then

| detp(A)| ≥ e
− lN

p
p (A)

φA .

Proof. Consider the function

D(z) =
∞∏

j=1

Gj(z) where Gj(z) := (1− zλj) exp

[
p−1∑
m=1

zmλm
j

m

]
.

Clearly,

D′(z) =
∞∑

k=1

G′
k(z)

∞∏
j=1,j 6=k

Gj(z)
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and

G′
j(z) =

[
−λj + (1− zλj)

p−2∑
m=0

zmλm+1
j

]
exp

[
p∑

m=1

zmλm
j

m

]
.

But

−λj + (1− zλj)

p−2∑
m=0

zmλm+1
j = −zp−1λp

j ,

since
p−2∑
m=0

zmzm
j =

1− (zλj)
p−1

1− zλj

.

So

G′
j(z) = −zp−1λp

j exp

[
p∑

m=1

zmλm
j

m

]
= −

zp−1λp
j

1− zλj

Gj(z).

Hence,D′(z) = h(z)D(z), where

h(z) := −zp−1

∞∑
k=1

λp
k

1− zλk

.

Consequently,

D(1) = detp(A) = exp

[∫
L

h(s)ds

]
.

But |s| ≤ 1 for anys ∈ L and thus∣∣∣∣∫
L

h(s)ds

∣∣∣∣ ≤ ∞∑
k=1

λp
k

∫
L

|s|p−1|ds|
|1− sλk|

≤ wp(A)lφ−1
A .

Therefore,

|detp(A)| =
∣∣∣∣exp

[∫
L

h(s)ds]

]∣∣∣∣ ≥ exp

[
−
∣∣∣∣∫

L

h(s)ds

∣∣∣∣] ≥ exp[−wp(A)lφ−1
A ].

This proves the theorem. �
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