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Let S, be the von Neumann-Schatten ideal of compact operators in a separable
Hilbert space. In the paper, upper and lower bounds for the regularized determi-
nants of operators frorfi, are established.
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1. Upper bounds

For anintegep > 2, letS, be the von Neumann-Schatten ideal of compact operators
A'in a separable Hilbert space with the finite noiWp(A) = [Trace(AA*)P/2]1/P
where A* is the adjoint. Recall that for ad € S, the regularized determinant is
defined as

det,,(A) == [ J(1 = A;(A)) exp [Z A4

m

where);(A) are the eigenvalues &f with their multiplicities arranged in decreasing
order.

The inequality
(1.1) det,, (A) < explg, NE(A)]

is well-known, cf. R, p. 1106], B, p. 194]. Recall thatdety(A)| < eN3(A/2, cf,

[5, Section IV.2 ]. However, to the best of our knowledge, the consgiafar p > 2

is unknown in the available literature although it is very important, in particular, for
perturbations of determinants. In the present paper we suggest boung for-

2). In addition, we establish lower bounds fbt,(A). As far as we know, the lower
bounds have not yet been investigated in the available literature.

Our results supplement the very interesting recent investigations of the von Neumann-

Schatten operatord[3, 8, 9, 10]. In connection with the recent results on determi-
nants, the papeg] should be mentioned. It is devoted to higher order asymptotics
of Toeplitz determinants with symbols in weighted Wienar algebras.

To formulate the main result we need the algebraic equation

p—3 m

1+me+2

m=1

(1.2) "% =p(1 - 2) (p>2).
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Below we prove that it haa unique positive roat, < 1. Moreover,

[ P
. < r2 .
(13) To > p+1

Theorem 1.1.LetA € S, (p=3,4,...). Theninequality{.1) holds with
_
p(1 —x0)

Gp =

The proof of this theorem is divided into a series of lemmas presented below.

Lemma 1.2. Equation (L..2) has a unique positive roaf; < 1.
Proof. Rewrite (L.2) as

g(x)::m—<l+z - )zO.

m=3

Clearly,g(0) = —1, g(z) — +oc asx — 1 — 0. So (L.2) has at least one root from
(0,1). But from (1.2) it follows that a root from[1, co) is impossible. Moreover,
(1.2 is equivalent to the equation

1 1 Elgm
= g
_ —2
p(l1—x) aP — m
The left part of this equation increases and the right part decreag@sign So the
positive root is unique. O
Furthermore, consider the function
.
In(l—2)+

m=1

f(z) :==Re

Z—] (z€C; p>2).
m
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Clearly,

oo Zm
f)==Red = (<1
m=p
Lemma 1.3. Letw € (0,1). Then
|f(Z)| < ,rp (7” — |Z| < w) Upper and Lower Bounds
- p(l _ w) o For Regularized Determinants
M. 1. Gil
PrOOf' Clearly’ o vol. 9, iss. 1, art. 2, 2008
TTI’L
|f(2)|§ZE (r<1).
m=p Title Page
Consequently, Contents
r 00 r o0 T p—lds
< mlge [ 1N ghge — / s"ds « 3
|f(z)|_/OZs s /Os Zs s g
m=p k=0 | >
Hence we get the required result. [ Page 5 of 11
Lemma 1.4.Foranyw € (0,1) and allz € C with|z| > w, the following inequality Go Back
is valid:
Full Screen
1f(2)] < hy(w)r?  where  h,(w) =w™? Close

Proof. Take into account that

[(1—2)e?]? = (1 — 2Re z + r?)e? < e 2Restri2Rez — o (5 € (),

p—l

2 w
—_ > 2).
w+mz:3m] v>2)
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sincel +x < e*,z € R. So

p—1 Sm p—1 rm
1- < 2 —
( z)exlem] <exp |r +mz:3m]
Therefore,
2 — "
FEISrP+Y = (:€0)
m=3
But
p—1 P
r? + E] r P < hy(w) (r>w)
m=3
This proves the lemma. ]

Lemmasl.3and1.4imply
Corollary 1.5. One has

f(2)] < gr? (€ C,p>2) where ¢§,:= min max {hp(w), ;} :

we(0,1) p(1 —w)
However, function:,(w) decreases iw € (0, 1) andm increases. So the
minimum in the previous corollary is attained when
1
hy(w) = ——.
This equation is equivalent td (9). Sog, = ¢, and we thus get the inequality
(1.4) [f()] < gr” (2 €C),
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Lemma1l.6.LetA € S,,p > 2. Thendet,(A) < exp|g,w,(A)] where

[e.9]

wp(A) =) (A

k=1

Proof. Due to (L.4),

det,(A) < H e® NP < exp [Z 0| A (A)]P
j=1 k=1

As claimed. O]

Proof of Theoreni..1. The assertion of Theoreinlfollows from the previous lemma
and the inequality

D IN(AP < NE(A)
k=1
cf. [9]. O
Furthermore, from1_.2) it follows that
p—3
xg_2 < p(1 — zp) zg = p(1 xg_z)
m=0
since ,
- 2
. . 1—af
m=0 1- Lo
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This proves inequalityl(3). Thus
< 1
dp > .
p(1- /)

Note that if the spectral radiug(A) of A is less than one, then according to Lemma
1.30ne can take

1
Qp = ————~-
"ol —r(A))
Corollary 1.7. LetA, B € S, (p > 2). Then
| det,(A) — det,(B)| < Ny(A — B) explgy(1 + Np(A) + Ny(B))"].

Indeed, this result is due to Theorém and the theorem by Seiler and Simai [
(see also4, p. 32]).
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2. Lower Bounds

In this section for brevity we pud;(A) = X;. Denote byL a Jordan contour
connecting) and 1, lying in the disc{z € C : |z| < 1}, not containing the points
1/\; for any eigenvalué,;, such that
(21) ¢A = inf

|1 — S)\k‘ > 0.
seLl; k=1,2,...

Let ! = |L| be the length ofL. For example, ifA does not have eigenvalues on
[1,00), then one cantake = [0, 1]. Inthis casé = 1 and¢, = infy scjo17 |1 — s\
If rs(A) < 1,thenl =1,¢4 > 1 —1r,(A).

Theorem 2.1.LetA € S, (p =2,3,...),1 € o(A) and condition £.1) hold. Then

INP(A)

[dety(A)] > ¢ s

Proof. Consider the function

o p—l
D(z) = HGj(z) where Gj(z) := (1 — z\;) exp [ S ] :
m

j=1 m=1

Clearly,
D'(z) =Y _Gi(z) ] G2
k=1 J=1,j#k

and
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But

p—2
N (L= 2hg) ) 2 =
m=0
since ,
§2 i 12N
-0 ! - Z/\j Upper and Lower Bounds
m= For Regularized Determinants
So b mym 1y M. 1. Gil
G/ Z Zp 1>\p ex J = — J G z). vol. 9, iss. 1, art. 2, 2008
() P Z m 1— 2z i(2)
m=1
/ —
Hence,D'(z) = h(z)D(z), where Tite Page
h(z) := —zpt i )\—i. Contents
1-— Z)\k
=1 «“ 33
Consequently,
4 >

D(1) = det,(A) = exp UL h<s)ds] .

But|s| < 1foranys € L and thus

Page 10 of 11
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