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ABSTRACT. In this paper we present a historical review of the investigation of two Ostrowski in-
equalities and describe several distinct streams for their generalizations. Also we point out some
new methods to obtain known results and give a number of new results related to Ostrowski’s
inequalities.
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1. H ISTORY AND GENERALIZATIONS

In his bookVorlesungen über Differential und Integralrechnung II,A. Ostrowski presented
the following interesting inequalities.

Theorem 1.1. [12, p. 289, problem 61], [10, pp. 92–93]. The minimum of the sumx2
1 + · · ·+x2

n

under the conditions

(1.1)
n∑

i=1

aixi = 0 and
n∑

i=1

bixi = 1

is

(1.2)

∑n
i=1 a2

i∑
i<j(aibj − ajbi)2

,

(
n∑

i=1

a2
i +

n∑
i=1

b2
i > 0

)
.

Theorem 1.2. [12, p. 290, problem 63], [10, p. 94]. The maximum of the sum(
∑n

i=1 bixi)
2

under the conditions

(1.3)
n∑

i=1

aixi = 0 and
n∑

i=1

x2
i = 1
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2 SANJA VAROŠANEC

is

(1.4)

∑
i<j(aibj − ajbi)

2∑n
i=1 a2

i

,

(
n∑

i=1

a2
i > 0

)
.

According to the Lagrange identity [10, p. 84], Theorem 1.1 can be rewritten in the following
form.

Theorem 1.3. Let a = (a1, . . . , an) andb = (b1, . . . , bn) be two nonproportional sequences of
real numbers and letx = (x1, . . . , xn) be any real sequence which satisfies

(1.5)
n∑

i=1

aixi = 0 and
n∑

i=1

bixi = 1.

Then

(1.6)
n∑

i=1

x2
i ≥

∑n
i=1 a2

i

(
∑n

i=1 a2
i )(
∑n

i=1 b2
i )− (

∑n
i=1 aibi)2

.

The second Ostrowski problem can also be written in the analogue form. In the literature
those forms are used more frequently than the original and have been extended, improved and
generalized in different ways.

The aim of this paper is to give a brief historical review and to carry those ideas somewhat
further.

K. Fan and J. Todd, [8], using Theorem 1.1, i.e. Theorem 1.3, they established the following
theorem.

Theorem 1.4. Let a = (a1, . . . , an) and b = (b1, . . . , bn) (n ≥ 2) be two sequences of real
numbers such thataibj 6= ajbi for i 6= j. Then

(1.7)

∑n
i=1 a2

i

(
∑n

i=1 a2
i )(
∑n

i=1 b2
i )− (

∑n
i=1 aibi)2

≤
(

2

n(n− 1)

)2 n∑
i=1

(
n∑

j=1,j 6=i

aj

ajbi − aibj

)2

.

They also generalized Theorem 1.4 using more than two vectors.
Another direction of generalization has arisen from the fact that the map(x1, . . . , xn) 7→√∑n

i=1 x2
i is a Euclidean norm inRn generated by the inner product〈x, y〉 =

∑n
i=1 xiyi. It is

natural to consider an arbitrary inner product instead of the Euclidean inner product. The first
generalization of that kind was done by Ž. Mitrović, [11] and after that some similar results
were given in [6], [7] and [15]. Here we quote Mitrović’s result.

Theorem 1.5.Leta andb be linearly independent vectors of a unitary complex vector spaceV
and letx be a vector inV such that

(1.8) 〈x, a〉 = α and 〈x, b〉 = β.

Then

(1.9) G(a, b)‖x‖2 ≥ ‖αb− βa‖2,

whereG(a, b) is the Gram determinant of vectorsa andb. Equality holds if and only if

(1.10) x =
1

G(a, b)
(〈a, βa− αb〉b− 〈b, βa− αb〉a).
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OSTROWSKI’ S INEQUALITIES 3

Here we present a rough outline of Mitrović’s proof. Lety be a vector inV given by

y =
1

G(a, b)
(〈a, βa− αb〉b− 〈b, βa− αb〉a).

If vector x satisfies conditions (1.8), then〈y, y〉 = 〈x, y〉 = 1
G(a,b)

‖αb − βa‖2 and‖x − y‖2 =

‖x‖2 − ‖y‖2. Since‖x− y‖2 ≥ 0, we obtain

‖x‖2 ≥ ‖y‖2 =
1

G(a, b)
‖αb− βa‖2

and inequality (1.9) holds.

Remark 1.6. Now, we point out another proof of Theorem 1.5. It is well known that Gram’s
determinant of the vectorsx1, x2, x3 is nonnegative, i.e. inequality

G(x1, x2, x3) ≥ 0

holds with equality iff the vectorsx1, x2, x3 are linearly dependent. Puttingx1 = x, x2 = a,
x3 = b and using notations〈x, a〉 = α and〈x, b〉 = β we have the following

0 ≤ G(x, a, b)

=

∣∣∣∣∣∣
〈x, x〉 〈x, a〉 〈x, b〉
〈a, x〉 〈a, a〉 〈a, b〉
〈b, x〉 〈b, a〉 〈b, b〉

∣∣∣∣∣∣
= G(a, b)‖x‖2 − 〈x, a〉

∣∣∣∣ 〈a, x〉 〈a, b〉
〈b, x〉 〈b, b〉

∣∣∣∣+ 〈x, b〉
∣∣∣∣ 〈a, x〉 〈a, a〉
〈b, x〉 〈b, a〉

∣∣∣∣
= G(a, b)‖x‖2 − α(α〈b, b〉 − β〈a, b〉) + β(α〈b, a〉 − β〈a, a〉),

G(a, b)‖x‖2 ≥ |α|2〈b, b〉 − αβ〈a, b〉 − βα〈b, a〉+ |β|2〈a, a〉 = ‖αb− βa‖2.

Equality holds iff vectorsx, a andb are linearly dependent, i.e. there exist scalarsλ andµ
such that

x = λa + µb.

Multiplying that identity bya andb respectively, we obtainα = λ〈a, a〉 + µ〈b, a〉 andβ =
λ〈a, b〉+ µ〈b, b〉 from where we easily find that

λ =
1

G(a, b)
(α〈b, b〉 − β〈b, a〉), µ =

1

G(a, b)
(β〈a, a〉 − α〈a, b〉).

So,x is the vector given in (1.10).
In the same paper [11] a generalization of Fan-Todd’s result is given. Furthermore, in the

paper [2] P.R. Beesack noticed that inequality (1.9) and a fortiori also Ostrowski’s inequality
(1.6) can be regarded as a special case of the Bessel inequality for non-orthonormal vectors.

Theorem 1.7. [2] Leta1, . . . , ak, (k ≥ 1) be linearly independent vectors of a Hilbert spaceH
and letα1, . . . , αk be given scalars. Ifx ∈ H satisfies

(1.11) 〈x, ai〉 = αi 1 ≤ i ≤ k,

then

(1.12) G(a1, . . . , ak)
2‖x‖2 ≥

∥∥∥∥∥
k∑

i=1

γ
(k)
i ai

∥∥∥∥∥
2

,
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4 SANJA VAROŠANEC

whereG(a1, . . . , ak) is the Gram determinant ofa1, . . . , ak andγ
(k)
i is the determinant obtained

fromG by replacing the elements of theith row ofG by (α1, . . . , αk). Moreover, equality holds
if and only if

(1.13) G(a1, . . . , ak)x =
k∑

i=1

γ
(k)
i ai.

Finally, an analogue of Theorem 1.5 and related generalizations in 2-inner andn-inner spaces
are given in [4] and [5].

The second stream of generalization of Ostrowski’s inequality (1.6) was started by Made-
vski’s paper [9]. He used Theorem 1.3 to obtain inequalities between certain statistical central
moments. Also, he gave the followingp-version of Ostrowski’s inequality.

Theorem 1.8. [9] Leta = (a1, . . . , an) andb = (b1, . . . , bn) be two nonproportional sequences
of real numbers and letx = (x1, . . . , xn) be any real sequence which satisfies

(1.14)
n∑

i=1

aixi = 0 and
n∑

i=1

bixi = 1.

If p is an integer, then

(1.15)

(
n∑

i=1

x2
i

)p

≥ (
∑n

i=1 a2
i )

p

(
∑n

i=1 a2
i )

p(
∑n

i=1 b2
i )

p − (
∑n

i=1 aibi)2p
.

In [1] M. Ali ć and J. Pěcaríc proved that the integerp can be substituted by an arbitrary real
numberp ≥ 1. In the same paper a sequence of results involving moments of discrete distribu-
tion function has been given. An integral version of those results and some generalizations of
known statistical inequalities given in [9], [14] and [16] are obtained in [13].

Recently, Theorems 1.1 and 1.2 have been the focus of investigation. In the papers [6] and
[7] the authors have used elementary arguments and the Cauchy-Buniakowski-Schwarz inequal-
ity to obtain Ostrowski type inequalities in unitary space. Indeed, the following theorems are
obtained.

Theorem 1.9. [7] Let a and b be linearly independent vectors of a real or complex unitary
vector spaceV and letx be a vector inV such that

(1.16) 〈x, a〉 = 0 and |〈x, b〉| = 1.

Then

(1.17) ‖x‖2 ≥ ‖a‖2

‖a‖2‖b‖2 − |〈a, b〉|2
.

Equality holds if and only if

(1.18) x = µ

(
b− 〈a, b〉

‖a‖2
a

)
,

whereµ ∈ K (K = R, C) is such that

|µ| = ‖a‖2

‖a‖2‖b‖2 − |〈a, b〉|2
.

Theorem 1.10. [6] Let a and b be linearly independent vectors of a real or complex unitary
vector spaceV and letx be a vector inV such that

(1.19) 〈x, a〉 = 0 and ‖x‖ = 1.
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OSTROWSKI’ S INEQUALITIES 5

Then

(1.20) |〈x, b〉|2 ≤ ‖a‖2‖b‖2 − |〈a, b〉|2

‖a‖2
.

Equality holds if and only if

(1.21) x = ν

(
b− 〈b, a〉

‖a‖2
a

)
,

whereν ∈ K(K = R, C) is so that

|ν| = ‖a‖
(‖a‖2‖b‖2 − |〈a, b〉|2) 1

2

.

It is obvious that these results are special cases of Theorem 1.5 but we mentioned it because
the method of proving is different from Mitrović’s method and leads to another generalization
which will be given in the next section. Proofs of the previous two theorems are based on the
Cauchy-Buniakowski-Schwarz inequality:

‖u‖2‖v‖2 ≥ |〈u, v〉|2, u, v ∈ V.

Applying it on vectorsu = z − 〈z,c〉
‖c‖2 c andv = d − 〈d,c〉

‖c‖2 c, wherec 6= 0 and taking into account
that

(1.22)

∥∥∥∥z − 〈z, c〉
‖c‖2

c

∥∥∥∥2

=
‖z‖2‖c‖2 − |〈z, c〉|2

‖c‖2
,

(1.23)

∥∥∥∥d− 〈d, c〉
‖c‖2

c

∥∥∥∥2

=
‖d‖2‖c‖2 − |〈d, c〉|2

‖c‖2
,

and

(1.24)

〈
z − 〈z, c〉

‖c‖2
c, d− 〈d, c〉

‖c‖2
c

〉
=
〈z, d〉‖c‖2 − 〈z, c〉〈c, d〉

‖c‖2

we have the following inequality

(1.25)
(
‖z‖2‖c‖2 − |〈z, c〉|2

) (
‖d‖2‖c‖2 − |〈d, c〉|2

)
≥
∣∣〈z, d〉‖c‖2 − 〈z, c〉〈c, d〉

∣∣2 .

Putting in inequality (1.25)z = x, c = a andd = b wherea andx satisfy〈x, a〉 = 0 and
‖x‖ = 1 we get inequality (1.20), while ifa andx satisfy〈x, a〉 = 0 and|〈x, b〉| = 1 inequality
(1.17) is obtained.

Remark 1.11.Let us mention that inequality (1.9) also can be obtained by the above-mentioned
method. In fact, putting in inequality (1.25)z = x, c = a andd = b, 〈x, a〉 = α and〈x, b〉 = β
we get (

‖x‖2‖a‖2 − |〈x, a〉|2
) (
‖b‖2‖a‖2 − |〈b, a〉|2

)
≥
∣∣β‖a‖2 − α〈a, b〉

∣∣2 ,

‖x‖2‖a‖2G(a, b) ≥
∣∣β‖a‖2 − α〈a, b〉

∣∣2 + |α|2G(a, b) = ‖a‖2‖αb− βa‖2

from where inequality (1.9) occurs. Using the fact that in the Cauchy-Buniakowski-Schwarz
inequality, equality holds iff vectors are proportional, we get (1.10).

Remark 1.12. Inequality (1.25) is a special case of the more general result related to Gram’s
determinant given in [10, p. 599]. That result is as follows.

J. Inequal. Pure and Appl. Math., 5(2) Art. 23, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 SANJA VAROŠANEC

Theorem 1.13.For vectorsx1, . . . , xn and y1, . . . , yn from unitary spaceV the following in-
equality holds∣∣∣∣∣∣det

 〈x1, y1〉 . . . 〈x1, yn〉
...

...
〈xn, y1〉 . . . 〈xn, zn〉

∣∣∣∣∣∣
2

≤ G(x1, . . . , xn)G(y1, . . . , yn),

with equality iff the vectorsx1, . . . , xn span the same subspace as the vectorsy1, . . . , yn.

2. FURTHER GENERALIZATIONS OF OSTROWSKI ’ S I NEQUALITIES

In this section we extend results from papers [1], [6], [7], [13] introducing super(sub)additive
function.

Theorem 2.1.Leta andb be linearly independent vectors of a unitary complex vector spaceV
and letx be a vector inV such that

(2.1) 〈x, a〉 = α and 〈x, b〉 = β.

If φ : [0,∞) → R is a nondecreasing, superadditive function, then

(2.2) φ(‖a‖2‖b‖2)− φ(|〈a, b〉|2) ≥ φ

(
‖αb− βa‖2

‖x‖2

)
.

If φ is a nonincreasing, subadditive function then a reverse in (2.2) holds.

Proof. Let us suppose thatφ is a superadditive nondecreasing function. Then we have

(2.3) φ(u) = φ((u− v) + v) ≥ φ(u− v) + φ(v), i.e.φ(u)− φ(v) ≥ φ(u− v).

Taking into account the nondecreasing property ofφ, results of Theorem 1.5 and inequality
(2.3) we conclude

φ(‖a‖2‖b‖2)− φ(|〈a, b〉|2) ≥ φ(‖a‖2‖b‖2 − (|〈a, b〉|2)

≥ φ

(
‖αb− βa‖2

‖x‖2

)
.

The case whenφ is a nonincreasing and subadditive function has been done similarly. �

In particular, inequality (2.2) holds for any nondecreasing convex functionφ, while its reverse
holds for any nonincreasing concave function. The result of Theorem 2.1 can be improved if
functionφ is a power function. In that case we have the following result.

Theorem 2.2.Suppose thata, b andx are as in Theorem 2.1. Ifp ≥ 1, then

(2.4) ‖x‖2p‖a‖2p(‖a‖2p‖b‖2p − |〈a, b〉|2p)

≥ max
{
‖a‖2p‖αb− βa‖2p, |β‖a‖2 − α〈a, b〉|2p + |α|2p(‖a‖2p‖b‖2p − |〈a, b〉|2p)

}
.

Proof. The functionφ(x) = xp, p ≥ 1 is a nondecreasing superadditive function so, a direct
consequence of the previous theorem is that fora, b andx which satisfy assumptions of Theorem
2.1 we have the following inequality

(2.5) ‖a‖2p‖b‖2p − |〈a, b〉|2p ≥ ‖αb− βa‖2p

‖x‖2p
.

Applying the method of proving in Theorem 2.1 on inequality (1.25) we get

(2.6)
(
‖z‖2p‖c‖2p − |〈z, c〉|2p

) (
‖d‖2p‖c‖2p − |〈d, c〉|2p

)
≥
∣∣〈z, d〉‖c‖2 − 〈z, c〉〈c, d〉

∣∣2p
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OSTROWSKI’ S INEQUALITIES 7

i.e. puttingz = x, c = a, d = b and taking into account that〈x, a〉 = α and〈x, b〉 = β we have

(2.7)
(
‖x‖2p‖a‖2p − |α|2p

) (
‖b‖2p‖a‖2p − |〈b, a〉|2p

)
≥
∣∣β‖a‖2 − α〈a, b〉

∣∣2p
.

After simple calculations, inequalities (2.6) and (2.7) give inequality (2.4). �

Remark 2.3. If p = 1, then the two terms on the righthand side of inequality (2.4) are equal,
but if p > 1 terms‖a‖2p‖αb − βa‖2p and|β‖a‖2 − α〈a, b〉|2p + |α|2p(‖a‖2p‖b‖2p − |〈a, b〉|2p)
are not comparable. For example, ifp = 2, ‖a‖ = 1, ‖b‖ = 1, 〈a, b〉 = 1

2
andα = 1, β ∈ R the

first term is equal to(β2 − β + 1)2, while the second term is equal to(β2 − β + 1
4
)2 + 15

16
. If

β ∈ (0, 1) the first term is less than the second term and ifβ > 1 the opposite inequality holds.

3. I NTERPOLATION

Some results about refinements of the original first Ostrowski’s inequality are given in [3].
Here we give more general results in which we consider refinements of Ostrowski’s inequalities
in arbitrary unitary complex vector spaces.

Theorem 3.1.Leta andb be linearly independent vectors in a unitary complex vector spaceV
and letx be a vector inV such that

(3.1) 〈x, a〉 = α and 〈x, b〉 = β.

Lety be a vector defined by

(3.2) y =
1

G(a, b)
(〈a, βa− αb〉b− 〈b, βa− αb〉a).

Then the vectorF (x) = θx + (1− θ)y, θ ∈ [0, 1], satisfies

(3.3) ‖x‖2 ≥ ‖F (x)‖2

and

(3.4) G(a, b)‖F (x)‖2 ≥ ‖αb− βa‖2.

Proof. Let us note thaty is a vector for which equality in (1.9) holds, i.e.

(3.5) G(a, b)‖y‖2 = ‖αb− βa‖2.

So, without any calculation we conclude that〈y, a〉 = α and〈y, b〉 = β. Now,

(3.6) 〈F (x), a〉 = 〈θx + (1− θ)y, a〉 = θα + (1− θ)α = α.

Similarly, we obtain

(3.7) 〈F (x), b〉 = β.

According to Theorem 1.5 and in view of (3.6) and (3.7) we get

G(a, b)‖F (x)‖2 ≥ ‖αb− βa‖2.

Let us calculate the product〈y, x〉.

G(a, b)〈y, x〉 = 〈〈a, βa− αb〉b− 〈b, βa− αb〉a, x〉
= 〈a, βa− αb〉〈b, x〉 − 〈b, βa− αb〉〈a, x〉
= β(β〈a, a〉 − α〈a, b〉)− α(β〈b, a〉 − α〈b, b〉)
= |β‖2‖a‖2 − αβ〈a, b〉 − αβ〈b, a〉+ |α|2‖b‖2

= ‖αb− βa‖2.
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8 SANJA VAROŠANEC

Comparing this result with (3.5) we have〈y, x〉 = 〈y, y〉 = 〈x, y〉. Using these equalities we
obtain

‖F (x)‖2 = 〈F (x), F (x)〉
= θ2‖x‖2 + θ(1− θ)〈x, y〉+ (1− θ)θ〈y, x〉+ (1− θ)2〈y, y〉
= θ2‖x‖2 + (1− θ2)‖y‖2.

‖x‖2 − ‖F (x)‖2 = (1− θ2)(‖x‖2 − ‖y‖2) = (1− θ2)(‖x− y‖2) ≥ 0

and inequality (3.3) has been established. �

Thus we obtain a sequence of succesive approximations

x, F (x), F 2(x), . . . , F n(x), . . .

converging toy for θ < 1 which interpolate inequality (1.9)

‖x‖2 ≥ ‖F (x)‖2 ≥ ‖F 2(x)‖2 ≥ · · · ≥ ‖F n(x)‖2 ≥ · · · ≥ ‖y‖2 =
‖αb− βa‖2

G(a, b)
.

If α = 0, β = 1, θ = 1
2

and‖x‖2 =
∑n

i=1 x2
i , then we get a result of M. Bjelica, [3].
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