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ABSTRACT. In the present note we establish néﬂbyﬁev—GrUss type inequalities by using
Pearic’s extension of the Montgomery identity.
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1. INTRODUCTION

For two absolutely continuous functiotisg : [a, )] — R consider the functional

1= [t (G [wae) (5 [ @),

where the involved integrals exist. In 18&2ebysevi[1] proved that if’, ¢’ € Lo [a, b], then

1
(1.1) T (f9)l < 5 (b= )" [1f' | 119l -
In 1935, Griuss 2] showed that

(12 T (f,0)| < § (M —m) (N =),

providedm, M, n, N are real numbers satisfying the conditieno < m < M < oo, —00 <
n<N <ooforzx € a,b.

Many researchers have given considerable attention to the inequalities (1]1), (1.2) and various
generalizations, extensions and variants of these inequalities have appeared in the literature, to
mention a few, see [4] 5] and the references cited therein. The aim of this note is to establish two
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new inequalities similar to those Gfeby3ev and Griiss inequalities by using#&&’s extension
of the Montgomery identity given in [6].

2. STATEMENT OF RESULTS

Let f : [a,b] — R be differentiable ona, b] and f’ : [a,b] — R is integrable orja, b]. Then
the Montgomery identity holds [3]:

1 b b .
(2.1) fa) =5 [ F@dts [ P o
whereP(z,t) is the Peano kernel defined by
e g<t<uw,
(2.2) P (z,t) = i
—ar T <t <hb.

Letw : [a,b] — [0,00) be some probability density function, that is, an integrable function
satisfying [ w (t)dt = 1, andW (t) = [Tw (z)dz for ¢ € [a,b], W(t) = 0 fort < a,
andW(t) = 1 for ¢t > b. In [6] Petaric has given the following weighted extension of the
Montgomery identity:

b b
23) f@ = [w@sods [ Pawor o
whereP, (z,t) is the weighted Peano kernel defined by
W(t), a<t<ux,
(2.4) P, (z.t) =
Wit —1, z<t<b.

We use the following notation to simplify the details of presentation. For some suitable functons
w, f,g: [a,b] — R,we set

rw.fo) = [(w@ @ewa—([ww @) ([vwswe).

and defing|-||  as the usual Lebesgue norm bg, [a, b] that is, ||h|| , := ess sup |k (t)| for
tela,b]

h € Ly |a,b].

Our main results are given in the following theorems.
Theorem 2.1.Let f, g : [a,b] — R be differentiable orla,b] and f', ¢’ : [a,b] — R are
integrable onfa, b]. Letw : [a,b] — [0, c0) be an integrable function satisfyirﬁw (t)dt = 1.
Then

b
(2.5) T (w, £, )| < 1l HQ/HOO/ w (z) H? () dz,
where
b
(2.6) H(x)—/ Py (2, 1) dt

for z € [a,b] and P, (x,t) is the weighted Peano kernel given py [2.4).
Theorem 2.2.Let f, g, f’,¢',w be as in Theorefn 2.1. Then

b
@n Tl <y [ w@ls@IIF e+ 1 @] JH @) do
whereH (z) is defined by[ (2]6).
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3. PROOFS OF THEOREMS [Z.1AND 2.2

Proof of Theorerm 2]1From the hypotheses the following identities hold [6]:
b b

(3.) fa)= [ wo s [ P r o
b b

(3.2 gle) = [wtg@dr+ [ Putetg ®

From (3.1) and[(3]2) we observe that

[f(x)—/abw(t)f@)dt] {g(x)—/abW(t)g(t)dt}

-[[ et rwa [ pawngwa],

b b
(3.3) / w ( t)dt — )/ w(t) f(t)dt

(/bw )(/bwa)g(t)dt)
_ [/awa(x,t)f’(t)dt] Mbp (.1) g ()dt]

Multiplying both sides of{(3]3) bys(z) and then mtegratlng both sides of the resulting identity
with respect tar from a to b and usmg the fact thq‘f t)dt =1, we have

8H  Twso= [ ww [/awa(w,t)f’(t)dt] [ Beig ] ar

From (3.4) and using the properties of modulus we observe that

I(wfg|</w {/\P (z, )| |f (t |dt]{/|p (z,8)]1g (t |dt]
< ||f’Hoo||g/Hm/ w (2) 2 () da

This completes the proof of Theor¢m[2.1. O

Proof of Theorerf 2]2Multiplying both sides of[(3]1) and (3.2) by(z)g(x) andw(z) f(x),
adding the resulting identities and rewriting we have

@5  w@) ()
b b
[w<x>g<:c>/ wO) ] O+ @) ) [ w<t>g<t>dt]
1
>

1
2

w@@ [ Pt @awe ) [ Roead al.

+
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Integrating both sides of (3.5) with respecttérom « to b and rewriting we have
1 b b )
@0 Twio =3 [ [s@e@ [ oo

b
+w(z) f (ac)/ P, (z,t) ¢ () dt} dr.
From (3.6) and using the properties of modulus we observe that

T (w, f,9)|

b b b
3 [ 0@ [ls@1 [P0l @lae 17 @1 1R o1l 0] do

IN

b
<3 [ w@ o @I 17 Ol +15 @119 @)L H @) d

The proof of Theorerp 212 is complete. O
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