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ABSTRACT. Recently Feng Qi has presented a sharp inequality between the sum of squares and
the exponential of the sum of a nonnegative sequence. His result has been extended to more
general power sums by Huan-Nan Shi, and, independently, by Yu Miao, Li-Min Liu, and Feng
Qi. In this note we generalize those inequalitites by introducing weights and permitting more
general functions. Inequalities in the opposite direction are also presented.
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1. INTRODUCTION
The following inequality is due to Feng Qil[2].

Letx,zo,...,x, be arbitrary nonnegative numbers. Then
2 n n
€ 2
(1.2) Z;xl < exp (;xl)
Equality holds if and only if all but one of, ..., z, are 0, and the missing one is equal to 2.

Thus the constant’ /4 is the best possible. Moreover, (L.1) is also valid for infinite sums.
In answer of an open question posed by Qi, Shi [3] extendedl (1.1) to more general power
sums on the left-hand side, proving that

(1.2) %Zx? < exp (ZIZ)
=1 =1
fora > 1, andn < co.
After the present paper had been prepared, Yu Miao, Li-Min Liu, and Feng Qi also published
Shi’s result for integer values af, see([1].
In papersl[2] and [3], after taking the logarithm of both sides, the authors considered the
left-hand side expression as arvariate function, and maximized it under the condition of
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xr1+---+x, fixed. To this end Qi applied differential calculus, while Shi used Schur convexity.
Both methods relied heavily on the properties of the log function.

On the other hand| [1] uses a probability theory argument, which also seems to utilize the
particular choice of functions in the inequality.

In the present note we present extensions of (1.2) by permitting arbitrary positive functions
on both sides and weights in the sums. Our method is simple and elementary.

Theorem 1.1.Letw;, ws, . .., w, be positive weightsf a positive function defined dfi, ~),
and leta > 0. Then for arbitrary nonnegative numbers, zs, . . ., x,, the inequality
(1.3) CZ w;zy; < f (Z w¢$i>
=1 =1
is valid with
(1.4) C=ws" ir>1f(; x %f(x),
where

(1.5)

min{wy, ..., w,} if a>1,
Wy = .
wy + -+ wy, if o < 1.

This inequality is sharp in the sense tl{accannot be replaced by any greater constant.

Remark 1. The necessary and sufficient condition for equality in|(1.3) is the following.
Casea > 1. There is exactly one; differing from zero, for whichw; = wy, and wyz;
minimizesz~* f(z) in (0, 00).
Casen = 1. Y, w;z; minimizesz ™ f(x) in (0, o).
Casen < 1. x1 = -+ = x,, andwgzr; minimizesz~“ f(x) in (0, c0).

Remark 2. Inequality [1.3) can be extended to infinite sums. fanda be as in Theorefn 1.1,
and let{w;}$°, be an infinite sequence of positive weights such that= inf,;<;,.cw; > 0
whena > 1, andw, = >, w; < oo whena < 1. Then for an arbitrary nonnegative
sequencéz; }°; such thad "~ w;z; < oo the following inequality holds.

C’Zwﬂ? </f (Z wi%‘) ;
=1 i=1
whereC' is defined in[(1.4).

Remark 3. By settinga > 1, f(z) = ¢® andw; = wy = --- = 1 we get Theorems 1 and 2 of
[3]. In particular, takingy = 2 implies Theorems 1.1 and 1.2 of [2].

2. CONVERSE |NEQUALITIES

Qi posed the problem of determining the optimal cons€afdr which

(2.1) exp <sz> < C’fo‘

=1 =1
holds for arbitrary nonnegativa, . . ., x,,, with a given positivex. As Shi pointed out, such an
inequality is generally untenable, because the exponential function grows faster than any power
function. However, if the exponential function is replaced with a suitable one, the following
inequalities, analogous to those of Theofen 1.1, have sense.
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Theorem 2.1.Letw,, wo, . .., w, be positive weightsf a positive function defined df, o),
and leta > 0. Supposeup,.,z “f(x) < oco. Then for arbitrary nonnegative numbers
x1, %, ..., T, the inequality

(22) f (Zn: ’(UZJZ',L) S Ciwlllla

is valid with
(2.3) C =wy 'supr ®f(x),
>0
where
| min{wy,...,w,} if o <1,
(2.4) wo_{w1+---+wn if a > 1.

This inequality is sharp in the sense tliatannot be replaced by any smaller constant.

Remark 4. The necessary and sufficient condition for equality in|(2.2) is the following.
Casea < 1. There is exactly one; differing from zero, for whichw; = w, and wyz;
maximizesz— f(z) in (0, o).
Casen = 1. ) ", wyz; maximizesz—® f(x) in (0, 00).
Casen > 1. z; = -+ =z, andwpx; maximizesz— f(z) in (0, 00).

Remark 5. Inequality [2.2) also remains valid for infinite sums. Lfetnda be as in Theorem
, and lefw;, }3°, be an infinite sequence of positive weights suchthat= inf,<; o, w; > 0
whena > 1, andw, := ) .-, w; < oo whena < 1. Then for an arbitrary nonnegative sequence
{x;}52, such thad".° | w;z; < oo the following inequality holds.

whereC' is defined in[(2.B).

3. FURTHER GENERALIZATIONS

Inequalities[(1.3) and (2.2) can be further generalized by replacing the power function with
more general functions. Unfortunately, the inequalities thus obtained are not necessarily sharp
anymore.

Let us introduce four classes of nonnegative power-like functions0, o) — R that are
positive for positiver.

(3.1) Fi={g:9(x)+9(y) < glz+y), g(x)g(y) < g(xy) forz,y > 0},
(3.2) Fy={g: gisconcaveg(z)g(y) < g(zy) for z,y > 0},
(3.3) Fs={g:9(x) +9(y) > g(z +y), g(x)g(y) > g(xy) for z,y > 0},
(3.4) Fi=1{g: gis convexg(z)g(y) > g(xy) for x,y > 0} .

Obviously, the power functiop(z) = z* belongs taF; andF; if « > 1, and toF, and F;
if o < 1. Infact, our classes are wider.

Theorem 3.1.Letpy, po, oy, ao be positive parameters and

| pzr, if0<a2 <1,
(35) 9(x) = { pox®?, if 1 < x.
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Then

(3.6) p<p<1, 1<ay<a; = g€ F,
(3.7) pr=p2<1, aa<a; <1 = geF,
(3.8) I1<p<p, < <1 = g€ F3
(3.9) 1<po=p1, 1<as<ay = g€ Fy

It would be of independent interest to characterize these four classes.
Our last theorem generalizes Theorém$ 1.1/and 2.1.

Theorem 3.2. Let wy, wo, . .., w, be fixed positive weights, and, -, . .., z,, arbitrary non-
negative numbers. Lgtbe a positive function defined ¢ co).
Supposg € F;. Then

(3.10) C’zn:wig(xi) <f (i wixi>

is valid with
(3.11) C = min g(w:) - inf @
1<i<n  wj >0 g(x)
Supposg € F,. Then(3.10)holds with
(3.12) o= 2 e S@)

wy  2>0 g(z)
wherewy = w; + -+ + w,,.
Supposg € Fs, andsup,-, L2 < co. Then

g(x)
(3.13) f (Z wi$i> <C Z w;g(x;)
i=1 i=1
is valid with
(3.14) C = max M ~supM.

1isn w; >0 g(7)

Supposg € Fy, andsup,.., 49 < co. Then@-I3)holds with

g

(3.15) C= 9(wo) - sup f(a:)’
Wo +>0 9(7)
wherewy = w; + - -+ + w,,.

4. PROOFS

Proof of Theorer 1}1First, leta: > 1. Making use of the superadditive property of th@ower
function we obtain

(4.1) / (Z wﬂz‘) > g% = f(x) <Z wﬂi)

> inf 27 f(x) Z(wixi)a

>0 -
=1

n
> wy tinf 27 f(2) - Z w;xy,
x>0 T
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which was to be proved.

Suppose€ (1]3) is valid for arbitrary nonnegative numbewsith some constart’. Letx; = 0
for j # i, wherei is chosen to satisfy; = wy. Then from [[1.B) we obtain thatw,z¢ <
f(woz;) must hold for everyr; > 0. HenceC < w§ ™' inf 27 f(z).

The proof is similar forx < 1. By applying then-power mean inequality we have

(4.2) f (; wixi) > 9161;% O f () <§ wixz)
= al;r>1£ = f(x) wg <w01 il wi:cl-)a

n
> inf 2 f(w) wi ™'Y wiaf,
=1

>0

as required.

Again, if (1.3) is valid for arbitrary nonnegative numberswith some constant’, let z, =
-+ =z, = x > 0. Then it follows thatCwyz®* < f(wex) for everyx > 0, implying
C <wy tinf 2z~ f(z). O

Proof of Remark]lLet « > 1. In the second inequality of (4.1) equality holds if and only if
there is at most one positive term in the sum. Siiias positive, forz; = -+ =z, = 0
(1.3) holds true with strict inequality. Let; be the only positive term in the sum, then the first
inequality fulfils with equality if and only ifw;z; = argminx~*f(z). The last inequality is
strict if w; > wy.

Similarly, in the case ofr < 1 we needr; = --- = x,, for equality in thea-power mean
inequality. Theny """ | w;z; = wozy, and the first inequality of (412) is strict ifyz; does not
minimizex=* f(z).

Finally, the case ofr = 1 is obvious. O

Proof of Remark]2The proof of [1.8) is valid for infinite sums, too, because both the superad-
ditivity of power functions with exponent > 1, and then-power mean inequality remain true
for an infinite number of terms. O

Proof of Theorer 2]1The proof of Theorerpn 111 can be repeated with obvious alterations. Let
a < 1. Then, by the subadditivity of the-power function we have

(4.3) f(z wz‘%’) <supx *f(x) (Z wixz‘)

x>0

n

<supz*f(z) Y (wiai)®

x>0 i—1

n
<wy 'supr®f(x) - Z w;xs.
x>0 i—

If « > 1, we have to apply the-power mean inequality again.

(4.4) f(zn: wizvz) <supz *f(z) (z”: wixijl

x>0
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=supz “f(z)wy (wo_l Z wixi)
i=1

x>0

x>0

n
<supz®f(w) wg Y wal
i=1

Suppose€](2]2) is valid for arbitrary nonnegative numbemsith some constant'. If o < 1,
let z; = 0 for j # ¢, where: is chosen to satisfyy, = wy, and letz; = = > 0. In the
complementary case let, = --- = z,, = x > 0. In both cases fron{ (2.2) we obtain that
f(wor) < Cwoz® must hold for everyr > 0. HenceC' > w§ ™' sup 272 f (). O

The proofs of RemarKs 4 afdl 5, being straightforward adaptations of what we have done in
the proofs of RemarKg 1 and 2, resp., are left to the reader.

Proof of Theorern 3|1Throughout we will suppose that< y.
Proof of (3.6). First we show thay is superadditive. It obviously holdsif+y < 1 orz > 1.
If y <1< x+y,then

9(x) +g(y) = pr(@™ +y*) <pr(@® +y*?) <pi(z +y)* <paz +y)* = g(z +y).
Finally, if z <1 < g, then

9(z) + g(y) = P12t + pay®? < pa(a®? +y*?) < pa(x +y)** = g(z + y).

Let us turn to supermultiplicativity. Itisvalidif < 1orz > 1. Letz < 1 < y, then
9(x)g(y) = prx®pyy™ < pi(zy)™, because,y™ < y*. On the other hand;(z)g(y) <
p2(xy)*2, because, 2 < 2. Thusg(z)g(y) < g(xy).

Proof of 3.7). ¢'(z) = prapz®~1if 0 < x < 1, andg/(z) = prasz®tif 2 > 1. Thusg'(z)

is decreasing, henggis concave. The proof of supermultiplicativity is the same as in the proof
of (3.6).

Proof of (3.8). It can be done along the lines of the proof pf {3.6), but with all inequality
signs reversed. Let us begin with the subadditivity. It is obvious,Hy < 1 orxz > 1. If

y <1<uz+y,then

9(x) +g(y) = pr(@® +y™) = pr(x® +y*?) = pr(x 4+ y)** = pa(z +y)* = g(z +y).
If x <1< y,then

9(x) + g(y) = pr1z™ + p2y™® > P2 +y**) > pa(x +y)** = g(x +y).

Concerning submultiplicativity, it obviously holds when< 1 orx > 1. Letx < 1 < y.
Theng(x)g(y) = prz®poy®* does not exceeg (zy)** on the one hand, ang(zy)** on the
other hand. Henceg(z)g(y) > g(zy).

Proof of (3.9). This timeg/(z) is increasing, thug is convex. The submultiplicativity of has
already been proved above. O

Proof of Theorerh 3]2We proceed similarly to the proofs of Theorems 1.1[and 2.1.
Letg € F;. Then

(z)

i=1 i=1
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f@) o glw) o
2 inf oy i, 2 (e
For the second inequality we applied the superadditivity,adnd for the third one the super-
multiplicativity.
Let g € F5. Using concavity at first, then supermultiplicativity, we obtain that

(4.6) f ( Z wixZ) > inf m g ( Z wimi)

2>0 ()
. [(2) 1 ¢
SR GO

inf J) 1 iwig(woxi)
i=1

2>0 g(x) w4

> ing L0 . L > wig(wo)g(xy),

z>0 g(x) wo &

v

as required.

The proof of [3.1B) in the cases gfc F; andg € F, can be performed analogously fo (4.5)
and [4.6), resp., with every inequality sign reversed, and whetef/er min appears they have
to be changed teup andmax, resp. O

Unfortunately, nothing can be said about the condition of equality in the sub/supermulti-
plicative steps. This is why inequalitids (3/10) and (8.13) are not sharp in general.
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