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ABSTRACT. In this paper we prove higher integrability results for vector fieldsB,E, (B,E) ∈
L2−ε(Ω, Rn) × L2−ε(Ω, Rn), ε small, such thatdiv B = 0, curl E = 0 satisfying a “reverse”
inequality of the type

|B|2 + |E|2 ≤
(

K +
1
K

)
〈B,E〉+ |F |2

with K ≥ 1 andF ∈ Lr(Ω, Rn), r > 2 − ε. Applications to the theory of quasiconformal
mappings and partial differential equations are given. In particular, we prove regularity results
for very weak solutions of equations of the type

div a(x,∇u) = div F.

If |a(x, z)|2 + |z|2 ≤ (K + 1/K) 〈a(x, z), z〉, in the homogeneous case, our method provides a
new proof of the regularity result

u ∈ W 1,2−ε
loc (Ω) ⇒ u ∈ W 1,2+ε

loc (Ω)

whereε is sufficiently small. A result of higher integrability for functions verifying a reverse
integral inequality is used, and its optimality is proved.
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2 ALBERTO FIORENZA AND FLAVIA GIANNETTI

1. I NTRODUCTION

The usual way to establish theW 1,2+ε
loc (Ω), ε > 0, regularity of solutionsu ∈ W 1,2

loc (Ω) of
equations of the type

div a(x,∇u) = div F in Ω,

where|a(x, z)|2 + |z|2 ≤ (K + 1/K) 〈a(x, z), z〉, is to combine the Caccioppoli inequality∫
Q

|∇u|2dx ≤ c

[∫
2Q

∣∣∣∣u− u2R

2R

∣∣∣∣2 dx +

∫
2Q

|F |2dx

]
,

whereR is the sidelength of the cubeQ ⊂ 2Q ⊂ Ω, with the Poincaré-Sobolev inequality(∫
Q

∣∣∣∣u− uR

R

∣∣∣∣2 dx

) 1
2

≤
(∫

Q

|∇u|
2n

n+2 dx

)n+2
2n

,

to obtain the nonhomogeneous reverse Hölder inequality

(1.1)
∫

Q

|∇u|2dx ≤ c

{[∫
2Q

(|∇u|2)
n

n+2 dx

]n+2
n

+

∫
2Q

|F |2dx

}
.

The higher integrability result then arises by using the well-known Giaquinta-Modica technique
[3, 2].

The aim of this paper is to provide a different way to get regularity results, based on inequal-
ities for div-curl vector fields (see Theorem 2.1, [5, 10]). Starting from these inequalities, under
the assumption of bounded distortion, we get directly a family of reverse type inequalities,
namely

(1.2)
∫

Q

(|∇u|2)1−εdx

≤ c1ε

∫
2Q

(|∇u|2)1−εdx + c2

[∫
2Q

(|∇u|2)(1−ε) n
n+1 dx

]n+1
n

+ c3

∫
2Q

(|F |2)(1−ε)dx.

Notice that, even if inequality (1.2) contains an extra term, by using our method we are able
to obtain a higher integrability result also forvery weaksolutions of some nonlinear elliptic
equations by just assuming an integrability on the gradient below the natural exponent (see [8]).
Let us observe also that ifε = 0 the exponentn/(n + 1) in inequality (1.2) is larger than the
exponentn/(n + 2) in inequality (1.1). Actually, inequality (1.2) follows from a more general
argument about vector fields of bounded distortion, which includes an analogous result of the
theory of quasiregular mappings (with the same exponent we get in (1.2), see [7]).

After recalling known results in Section 2, we prove a higher integrability result for func-
tions verifying a reverse-type inequality (Theorem 3.1) in Section 3. In Section 4 we give a
counterexample showing that generally the assumptions in Theorem 3.1 cannot be weakened.
In Section 5 we prove a higher integrability result for finite distortion vector fields (see Propo-
sition 5.1), and we give some applications to the theory of quasiconformal mappings and to
the theory of regularity for very weak solutions of homogeneous nonlinear elliptic equations in
divergence form. Finally, in Section 6, we extend our method to the case of more general vector
fields in order to study the case of nonhomogeneous equations (see Theorem 6.1).
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REGULARITY RESULTSFOR VECTORFIELDS 3

2. PRELIMINARY RESULTS

In the following we will consider div-curl vector fieldsB = (B1, . . . , Bn) ∈ Lq(Rn, Rn),
E = (E1, . . . , En) ∈ Lp(Rn, Rn), 1 < p, q < ∞, 1

p
+ 1

q
= 1, i.e.

curl E =

(
∂Ei

∂xj

− ∂Ej

∂xi

)
i,j=1,...,n

= 0

div B =
n∑

i=1

∂Bi

∂xi

= 0

(2.1)

in the sense of distributions.
The following basic estimates are established in [5] (see also [10] for the present formulation).

We denote byQ0, Q open cubes inRn with sides parallel to the coordinate axis, and by2Q the
cube with the same center ofQ and double side-length.

Theorem 2.1. Let1 < p, q < ∞ be a Hölder conjugate pair,1
p

+ 1
q

= 1, and let1 < r, s < ∞
be a Sobolev conjugate pair,1

r
+ 1

s
= 1 + 1

n
. Then there exists a constantcn = cn(p, s) such

that for each cubeQ such that2Q ⊂ Q0 ⊂ Rn we have

(2.2)

∣∣∣∣∫
Q

〈B, E〉
|B|ε|E|ε

dx

∣∣∣∣ ≤ cnε

[∫
2Q

|E|(1−ε)pdx

] 1
p
[∫

2Q

|B|(1−ε)qdx

] 1
q

+ cn

[∫
2Q

|E|(1−ε)sdx

] 1
s
[∫

2Q

|B|(1−ε)rdx

] 1
r

,

whenever0 ≤ 2ε ≤ min

{
p− 1

p
,
q − 1

q
,
r − 1

r
,
s− 1

s

}
anddiv B = 0, curl E = 0.

The following proposition by Giaquinta-Modica [3, 2] will be useful in the sequel.

Proposition 2.2. Letg ∈ Lα(Q0), α > 1 andf ∈ Lr(Q0), r > α be two non-negative functions
and suppose that for every cubeQ such that2Q ⊂ Q0 the following estimate holds

(2.3)
∫

Q

gαdx ≤ b

{(∫
2Q

gdx

)α

+

∫
2Q

fαdx

}
+ θ

∫
2Q

gαdx

with b > 1. There exist constantsθ0 = θ0(α, n), σ0 = σ0(b, θ, α, r, n) such that ifθ < θ0, then
g ∈ Lα+σ

loc (Q0) for all 0 < σ < σ0 and

(2.4)

(∫
Q

gα+σdx

) 1
α+σ

≤ c

{(∫
2Q

gαdx

) 1
α

+

(∫
2Q

fα+σdx

) 1
α+σ

}
,

wherec is a positive constant depending onb, θ, α, r, n.

3. REVERSE HÖLDER I NEQUALITIES AND H IGHER I NTEGRABILITY

This section is concerned with a variant of the result established in Proposition 2.2. We
remark that in our assumption (3.1) we will consider a family of inequalities of the type (2.3) in
which both the exponent of integrability of the functiong and a coefficient in the right hand side
depend onε. Nevertheless, even if Proposition 2.2 cannot be applieda priori, in the theorem
we will prove that we can obtain a higher integrability result forg and an estimate of the type
(2.4).
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4 ALBERTO FIORENZA AND FLAVIA GIANNETTI

Theorem 3.1. Let g ∈ L2(1−ε)(Q0) andf ∈ Lr(Q0), 0 ≤ ε < 1
2
, r > 2(1− ε), be nonnegative

functions such that

(3.1)
∫

Q

g2(1−ε)dx ≤ c1ε

∫
2Q

g2(1−ε)dx + c2

{(∫
2Q

g2(1−ε) n
n+1 dx

)n+1
n

+

(∫
2Q

f 2(1−ε)dx

)}
for every cubeQ ⊂ 2Q ⊂ Q0, for some constantsc1 ≥ 0, c2 > 0.

Then there exist̄ε = ε̄(c1, n) and η̄ = η̄(c1, c2, r, ε, n) such that if0 ≤ ε < ε̄, theng ∈
L

2(1−ε)+η
loc (Q0), ∀ 0 ≤ η < η̄ and(∫

Q

g2(1−ε)+ηdx

) 1
2(1−ε)+η

≤ c

{(∫
2Q

g2(1−ε)dx

) 1
2(1−ε)

+

(∫
2Q

f 2(1−ε)+ηdx

) 1
2(1−ε)+η

}
,

wherec is a positive constant depending onc2, r, ε, n.

Proof. Since the functionsgε = g2(1−ε) n
n+1 , fε = f 2(1−ε) n

n+1 verify the inequality

(3.2)
∫

Q

g
n+1

n
ε dx ≤ c2

{(∫
2Q

gεdx

)n+1
n

+

(∫
2Q

f
n+1

n
ε dx

)}
+ c1ε

∫
2Q

g
n+1

n
ε dx

we can apply Proposition 2.2 withα = n+1
n

and b = c2 . We getθ0 = θ0(n) and σ0 =

σ0(c2, r, ε, n) such that, if (3.2) holds withc1ε < θ0

2
, thengε ∈ Lα+σ

loc (Q0) for every0 < σ < σ0,
i.e. [

g2(1−ε) n
n+1

]n+1
n

+σ

∈ L1
loc(Q0) ∀ 0 < σ < σ0

and

(3.3)

(∫
Q

g
n+1

n
+σ

ε dx

) 1
n+1

n +σ

≤ c

{(∫
2Q

g
n+1

n
ε dx

) n
n+1

+

(∫
2Q

f
n+1

n
+σ

ε dx

) n
n+1

+σ
}

with c depending onc2, r, ε, n.
Set

0 < ε̄ <
θ0

2c1

, 0 < η̄ < (1− ε̄)
2nσ0

n + 1
.

If 0 ≤ ε < ε̄ and0 ≤ η < η̄, we have

ε < ε̄ < 1− η̄
n + 1

2nσ0

< 1− η
n + 1

2nσ0

or, equivalently,

2(1− ε) + η < 2(1− ε)
n

n + 1

[
n + 1

n
+ σ0

]
.

Therefore we get
g ∈ L

2(1−ε)+η
loc (Q0)

and inequality (3.3) becomes(∫
Q

g2(1−ε)+ηdx

) 1
2(1−ε)+η

≤ c

{(∫
2Q

g2(1−ε)dx

) 1
2(1−ε)

+

(∫
2Q

f 2(1−ε)+ηdx

) 1
2(1−ε)+η

}
.

�

Let us observe that upon closer inspection of the proof of Theorem 3.1, one can note that
the gain of integrability given byσ0 = σ0(c2, r, ε, n) is actually dependent only onc2,

r
2(1−ε)

, n.
Nevertheless, iff ≡ 0 a.e. inQ0, the numberσ0, and therefore alsōη andc, do not depend on
ε. This remark is crucial to prove the following.
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REGULARITY RESULTSFOR VECTORFIELDS 5

Corollary 3.2. Let0 ≤ ε < 1
2

andg ∈ L2(1−ε)(Q0), Q0 ⊂ Rn, be such that∫
Q

g2(1−ε)dx ≤ c1ε

∫
2Q

g2(1−ε)dx + c2

(∫
2Q

g2(1−ε) n
n+1 dx

)n+1
n

for every cubeQ ⊂ 2Q ⊂ Q0.
Then there exists̄ε = ε̄(c1, n) such that if0 ≤ ε < ε̄, theng ∈ L2+2ε

loc (Q0) and

(3.4)

(∫
Q

g2(1+ε)dx

) 1
2(1+ε)

≤ c

(∫
2Q

g2(1−ε)dx

) 1
2(1−ε)

wherec is a positive constant depending onc2, n.

Proof. Let us apply Theorem 3.1 withf ≡ 0 a.e. inQ0. If ε < min(ε̄, η̄
4
), choosingη = 4ε,

from inequality (3.1) we getg ∈ L2+2ε
loc (Q0) and inequality (3.4) holds. �

4. A COUNTEREXAMPLE

Let us considerf, g non-negative functions on a cubeQ0 satisfying assumptions of the type
of Theorem 3.1 withc1 = 0, namely,f, g are such thatg ∈ Lα(Q0), f ∈ Lλα(Q0) for some
α > 1, λ > 1 and

(4.1)

(∫
Q

gαdx

) 1
α

≤ a

∫
2Q

gdx + b

(∫
2Q

fαdx

) 1
α

∀Q, 2Q ⊂ Q0.

In this case it is known, [6], that ifλ is sufficiently close to1, g ∈ Lλα
loc(Q0) and

(4.2)

(∫
Q

gλαdx

) 1
λα

≤ aλ

(∫
2Q

gλdx

) 1
λ

+ bλ

(∫
2Q

fλαdx

) 1
λα

,

whereaλ andbλ are constants depending only onn, α, a, b.
In the following we show that, even if it is still true thatg ∈ Lλα

loc(Q0) for anyλ < 1 (suffi-
ciently small), one cannot find anyλ < 1, aλ > 0, bλ > 0 such that estimate (4.2) holds for any
g ∈ Lα(Q0), f ∈ Lα(Q0) verifying (4.1). If we consider a functionf ∈

⋂
1≤p<α Lp(Q0) such

that
∫

Q
fαdx = +∞ ∀Q ⊂ Q0, of course we havef ∈ Lλα(Q0) for λ < 1, and it is possible

to show immediately that there are noaλ, bλ > 0 such that (4.2) holds for anyg ∈ Lα(Q0), for
anyf ∈ Lλα(Q0) verifying (4.1).

We will proceed as follows: by a contradiction argument, we will be able to prove that there
existsλ < 1 such thatany functiong0 ∈ Lλα(Q0), g0 > 0, satisfies a certain reverse inequality,
which is generally false.

Let g ∈ C(Q0), g > 0. Then there existsδ > 0 such that(∫
2Q

gαdx

) 1
α

≤ 2

∫
2Q

gdx ∀Q, 2Q ⊂ Q0, diam2Q < δ.

In fact,

sup
x∈2Q

g(x) ≤ sup
x,y∈2Q

|g(x)− g(y)|+ g(y) ∀y ∈ 2Q

and then, because of the uniform continuity ofg, we have

sup
2Q

g ≤ 2 inf
2Q

g.
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6 ALBERTO FIORENZA AND FLAVIA GIANNETTI

Let us divideQ0 into a finite number of disjoint cubes

Q0 =
N⋃

j=1

Qj

such that
2Q ⊂ Q0, diam2Q ≥ δ ⇒ ∃Qj : Qj ⊂ 2Q.

Now let us point out that iff is any function inLr(Q0) for every1 ≤ r < α, but∫
Qj

fαdx = +∞ ∀j = 1, . . . , N

then there exist

fk = max
j=1,...,N

k min{f, k}(∫
Qj

(min{f, k})αdx

) 1
2α

such that(∫
2Q

(
1

k
fk

)α) 1
α

≥ max
Q0

g ≥
(∫

2Q

gαdx

) 1
α

∀Q, 2Q ⊂ Q0, diam2Q ≥ δ.

Therefore(∫
2Q

gαdx

) 1
α

≤ 2

∫
2Q

gdx +

(∫
2Q

(
1

k
fk

)α) 1
α

∀Q, 2Q ⊂ Q0,

i.e. g, 1
k
fk satisfy inequality (4.1).

Let us suppose to the contrary that for someλ < 1(∫
Q

gλαdx

) 1
λα

≤ aλ

(∫
2Q

gλdx

) 1
λ

+ bλ

(∫
2Q

(
1

k
fk

)λα
) 1

λα

∀Q, 2Q ⊂ Q0.

Lettingk tend to infinity, we have the inequality(∫
Q

gλαdx

) 1
λα

≤ aλ

(∫
2Q

gλdx

) 1
λ

∀Q, 2Q ⊂ Q0

for every continuous functiong.
This inequality, by an approximation argument, extends to every functiong0 ∈ Lλα(Q0),

g0 > 0 (∫
Q

gλα
0 dx

) 1
λα

≤ aλ

(∫
2Q

gλ
0dx

) 1
λ

∀Q, 2Q ⊂ Q0,

which is absurd, since this inequality implies a higher integrability forg0.

5. H IGHER I NTEGRABILITY RESULTS AND APPLICATIONS

We start with the following regularity result for vector fields of bounded distortion

Proposition 5.1. Let Ω ⊂ Rn, 0 < ε < 1 andΦ = (E, B) ∈ L2−ε(Ω, Rn) × L2−ε(Ω, Rn) be
such thatdiv B = 0, curl E = 0 and

(5.1) |B(x)|2 + |E(x)|2 ≤
(

K +
1

K

)
〈B(x), E(x)〉 a.e. inΩ,
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REGULARITY RESULTSFOR VECTORFIELDS 7

whereK ≥ 1. Then there exists̄ε = ε̄(K, n) such thatΦ ∈ L2+ε
loc (Ω, Rn)× L2+ε

loc (Ω, Rn) for all
0 < ε < ε̄ and (∫

Q

|Φ|2+εdx

) 1
2+ε

≤ c

(∫
2Q

|Φ|2−εdx

) 1
2−ε

∀Q, 2Q ⊂ Ω,

wherec is a positive constant depending onK, n.

Proof. Let us fix the cubeQ such that2Q ⊂ Ω. Applying Theorem 2.1 withp = q = 2 and
r = s = 2n

n+1
, from inequality (5.1) we get

∫
Q

(|B|2+|E|2)1−εdx ≤ cn,K ε

∫
2Q

(|B|2+|E|2)1−εdx+cn,K

(∫
2Q

(|B|2 + |E|2)(1−ε) n
n+1 dx

)n+1
n

for ε sufficiently small. Substitutingg2 for |B|2 + |E|2 in the last inequality gives∫
Q

g2−2εdx ≤ cn,K ε

∫
2Q

g2−2εdx + cn,K

(∫
2Q

g(2−2ε) n
n+1 dx

)n+1
n

.

By Corollary 3.2 there exists̄ε = ε̄(K, n) such that if0 ≤ ε < ε̄, theng ∈ L2+2ε
loc (Ω) and(∫

Q

g2+2εdx

) 1
2+2ε

≤ c

(∫
2Q

g2−2εdx

) 1
2−2ε

and then the assertion. �

Now we consider the equation on a bounded open setΩ ⊂ Rn,

Au = 0 in Ω ⊂ Rn,

whereA is a differential operator defined by

Au = div a(x,∇u).

Herea : Ω × Rn → Rn is a mapping such thatx → a(x, z) is measurable for allz ∈ Rn and
z → a(x, z) is continuous for almost everyx ∈ Ω. Furthermore, we assume that there exists
K ≥ 1 such that for almost everyx ∈ Ω we have

(5.2) |a(x, z)|2 + |z|2 ≤
(

K +
1

K

)
〈a(x, z), z〉,

wherex, z are arbitrary vectors inRn.
Let us prove the following result (originally proved in [9], in the linear case, by using a

duality technique).

Corollary 5.2. Let0 < ε < 1
2

andu ∈ W 1,2−2ε
loc (Ω) be a very weak solution of

div a(x,∇u) = 0.

Then there exists̄ε = ε̄(K, n) such thatu ∈ W 1,2+2ε
loc (Ω) for all 0 < ε < ε̄ and(∫

Q

|∇u|2+2εdx

) 1
2+2ε

≤ c

(∫
2Q

|∇u|2−2εdx

) 1
2−2ε

,

wherec is a positive constant depending onK,n.
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8 ALBERTO FIORENZA AND FLAVIA GIANNETTI

Proof. Setting

E = ∇u, B = a(x,∇u)

we havediv B = 0, curl E = 0 and, by (5.2),

|E|2 + |B|2 = |∇u|2 + |a(x,∇u)|2 ≤
(

K +
1

K

)
〈a(x,∇u),∇u〉

so thatE, B are div-curl fields of bounded distortion. Applying Proposition 5.1 we get the
assertion. �

Another interesting case to which Proposition 5.1 applies is when one considers a homeo-
morphism

f = (f 1, f2) : Ω ⊂ R2 → R2,

f i ∈ W 1,2−ε(Ω) i = 1, 2,

f K-quasiregular, K ≥ 1, i.e. |Df(x)|2 ≤
(

K +
1

K

)
J(x, f),

where |Df(x)| denotes the norm of the distributional differentialDf(x) and J(x, f) is the
Jacobian determinantJ(x, f) = det Df(x).

Then, writing the JacobianJ(x, f) as 〈B, E〉, whereE = ∇f 1 = (f 1
x , f1

y ) and B =

(f 2
y ,−f 2

x) we havediv B = 0, curl E = 0 and that (5.1) holds. It follows that forε suffi-
ciently smallf ∈ W 1,2+ε(Ω, R2), giving back in this way the celebrated theorem by Bojarski
[1]. Significant results about the Jacobian determinant are in [7].

6. REGULARITY RESULTS FOR NONHOMOGENEOUS EQUATIONS

In this section we considerΦ = (E, B) ∈ L2−2ε(Ω, Rn)× L2−2ε(Ω, Rn) such that

div B = 0, curl E = 0,(6.1)

|B(x)|2 + |E(x)|2 ≤
(

K +
1

K

)
〈B(x), E(x)〉+ |F |2,(6.2)

whereF is a function inLr(Ω, Rn), r > 2− 2ε, for ε sufficiently small.

Theorem 6.1. Let 0 ≤ ε < 1
2

and E, B vector fields as in (6.1),(6.2). Then there existε̄ =

ε̄(K, n) and η̄ = η̄(K, r, ε, n) such that if0 ≤ ε < ε̄, thenΦ = (E, B) ∈ L2−2ε+η
loc (Ω, Rn) ×

L2−2ε+η
loc (Ω, Rn) for all 0 ≤ η < η̄ and

(6.3)(∫
Q

|Φ|2−2ε+ηdx

) 1
2−2ε+η

≤ c

{(∫
2Q

|Φ|2−2εdx

) 1
2−2ε

+

(∫
2Q

(|F |2)
2−2ε+η

2 dx

) 1
2−2ε+η

}
,

wherec is a positive constant depending onK, r, ε, n.

Proof. Let us fixQ a cube such that2Q ⊂ Ω and set

Q+ = {x ∈ Q | 〈B, E〉 ≥ 0 a.e.}

Q− = {x ∈ Q | 〈B, E〉 ≤ 0 a.e.}
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Let us observe that by (6.2), replacing|F | with f , we have∫
Q−

−〈B, E〉
|B|ε|E|ε

dx ≤
∫

Q−
(|B||E|)1−εdx

≤
∫

Q−
(|B|2 + |E|2)1−εdx

≤
∫

Q−

[(
K +

1

K

)
〈B, E〉+ f 2

]1−ε

dx

≤
∫

Q−
f 2−2εdx ≤

∫
Q

f 2−2εdx

and therefore ∫
Q

〈B, E〉
|B|ε|E|ε

dx =

∫
Q+

〈B, E〉
|B|ε|E|ε

dx +

∫
Q−

〈B, E〉
|B|ε|E|ε

dx

≥
∫

Q+

〈B, E〉
(|B|2 + |E|2 + f 2)ε

dx−
∫

Q

f 2−2εdx

Applying Theorem 2.1 withp = q = 2 andr = s = 2n
n+1

, for ε sufficiently small, we get∫
Q

〈B, E〉
(|B|2 + |E|2 + f 2)ε

dx ≤ cnε

∫
2Q

(|B|2 + |E|2 + f 2)1−εdx

+ cn

(∫
2Q

(|B|2 + |E|2 + f 2)(1−ε) n
n+1 dx

)n+1
n

+

∫
2Q

f 2−2εdx.

By (6.2)

〈B, E〉 ≥ cK(|B|2 + |E|2 − f 2) = cK(|B|2 + |E|2 + f 2)− 2cKf 2

and therefore∫
Q

(|B|2 + |E|2 + f 2)1−εdx

≤ cn,K ε

∫
2Q

(|B|2 + |E|2 + f 2)1−εdx + cn,K

(∫
2Q

(|B|2 + |E|2 + f 2)(1−ε) n
n+1 dx

)n+1
n

+ cK

∫
2Q

f 2

(|B|2 + |E|2 + f 2)ε
dx +

∫
2Q

f 2−2εdx

≤ cn,K ε

∫
2Q

(|B|2 + |E|2 + f 2)1−εdx + cn,K

(∫
2Q

(|B|2 + |E|2 + f 2)(1−ε) n
n+1 dx

)n+1
n

+ (cK + 1)

∫
2Q

f 2−2εdx.

Settingg2 = |B|2 + |E|2 + f 2, the last inequality implies∫
Q

g2−2εdx ≤ cn,K ε

∫
2Q

g2−2εdx + cn,K

(∫
2Q

g(2−2ε) n
n+1 dx

)n+1
n

+ (cK + 1)

∫
2Q

f 2−2εdx.
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By Theorem 3.1 there exist̄ε = ε̄(K, n) and η̄ = η̄(K, r, ε, n) such that if0 ≤ ε < ε̄, then
g ∈ L2−2ε+η

loc (Ω) for all 0 ≤ η < η̄ and(∫
Q

g2−2ε+ηdx

) 1
2−2ε+η

≤ c

{(∫
2Q

g2−2εdx

) 1
2−2ε

+

(∫
2Q

(f 2)
2−2ε+η

2 dx

) 1
2−2ε+η

}
and then the assertion. �

Let us consider now the following equation on a bounded open setΩ ⊂ Rn

(6.4) div a(x,∇u) = div F,

whereF ∈ Lr(Ω), r > 2 − 2ε, for ε sufficiently small anda : Ω × Rn → Rn is a mapping
satisfying the assumptions of Section 5.

Corollary 6.2. Let 0 ≤ ε < 1
2

andu ∈ W 1,2−2ε
loc (Ω) be a very weak solution of the equation

(6.4). Then there exist̄ε = ε̄(K, n) and η̄ = η̄(K, r, ε, n) such that if0 ≤ ε < ε̄, then
u ∈ W 1,2−2ε+η

loc (Ω) for all 0 ≤ η < η̄ and(∫
Q

|∇u|2−2ε+ηdx

) 1
2−2ε+η

≤ c

{(∫
2Q

|∇u|2−2εdx

) 1
2−2ε

+

(∫
2Q

|F |2−2ε+ηdx

) 1
2−2ε+η

}
for all cubesQ such that2Q ⊂ Ω and wherec is a positive constant depending onK, r, ε, n.

Proof. Setting
E = ∇u, B = a(x,∇u)− F,

we have

|E|2 + |B|2 ≤ |∇u|2 + (|a(x,∇u)|+ |F |)2

≤ 2(|a(x,∇u)|2 + |∇u|2) + 2|F |2

≤ 2

(
K +

1

K

)
〈a(x,∇u),∇u〉+ 2|F |2

= 2

(
K +

1

K

)
〈a(x,∇u)− F,∇u〉+ 2

(
K +

1

K

)
〈F,∇u〉+ 2|F |2.

Since by Young’s inequality

〈F,∇u〉 = 2〈F,∇u〉 − 〈F,∇u〉 ≤ 2 · 2
(

K +
1

K

)
|F |2 + 2

1

2
(
K + 1

K

) |∇u|2 − 〈F,∇u〉

≤ 4

(
K +

1

K

)
|F |2 +

1

K + 1
K

(|a(x,∇u)|2 + |∇u|2)− 〈F,∇u〉

≤ 4

(
K +

1

K

)
|F |2 + 〈a(x,∇u),∇u〉 − 〈F,∇u〉

= 4

(
K +

1

K

)
|F |2 + 〈a(x,∇u)− F,∇u〉

we get

|E|2 + |B|2 ≤ 4

(
K +

1

K

)
〈B, E〉+

[
8

(
K +

1

K

)2

+ 2

]
|F |2,

i.e. E, B are vector fields satisfying (6.1) and (6.2). From Theorem 6.1 we get the higher
integrability for|E|2 + |B|2 and then for|∇u|; the estimate follows directly from (6.3). �
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Remark 6.3. Let u ∈ W 1,2
loc (Ω) be a solution of the equation (6.4). Corollary 6.2 asserts that the

functiong = |∇u| verifies inequality (4.1) and, surprisingly, satisfies also inequality (4.2) with
λ < 1 sufficiently small.
Remark 6.4. We note that, arguing as in the end of Section 5, our result of higher integrability
applies also to(K, K ′)-quasiregular mappings (see [4]), i.e. functionsf verifying

f = (f 1, f2) : Ω ⊂ R2 → R2,

f i ∈ W 1,2−ε(Ω) i = 1, 2,

|Df(x)|2 ≤
(

K +
1

K

)
J(x, f) + K ′.

REFERENCES

[1] B. BOJARSKI, Homeomorphic solutions of Beltrami system,Dokl. Akad. Nauk. SSSR, 102(1955),
661–664.

[2] E. GIUSTI, Metodi Diretti nel Calcolo delle Variazioni,Unione Matematica Italiana(1994).

[3] M. GIAQUINTA AND G. MODICA, Regularity results for some classes of higher order non linear
elliptic systems,J. Reine Angew. Math., 311/312(1979), 145–169.

[4] D. GILBARG AND N.S. TRUDINGER,Elliptic Partial Differential Equations of Second Order,
Springer (1983).

[5] T. IWANIEC, Integrability Theory of the Jacobians,Lipschitz Lectures(1995).

[6] T. IWANIEC, The Gehring Lemma, Quasiconformal Mappings and Analysis,A Collection of Pa-
pers Honoring F.W. Gehring P.L. Duren, J.M. Heinonen, B.G. Osgood, B.P. Palka(1998) Springer-
Verlag, 181–204.

[7] T. IWANIEC AND C. SBORDONE, On the integrability of the Jacobian under minimal hypothesis,
Arch. Rat. Mech. Anal., 119(1992), 129–143.

[8] T. IWANIEC AND C. SBORDONE, Weak minima of variational integrals,J. Reine Angew. Math.,
454(1994), 143–161.

[9] N. MEYERS AND A. ELCRAT, Some results on regularity for solutions of nonlinear elliptic sys-
tems and quasiregular functions,Duke Math. J., 42(1) (1975), 121–136.

[10] C. SBORDONE, New estimates for div-curl products and very weak solutions of PDEs,Annali
Scuola Normale Superiore di Pisa(IV), 25(3-4) (1997), 739–756.

J. Inequal. Pure and Appl. Math., 1(2) Art. 14, 2000 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminary Results
	3. Reverse Hölder Inequalities and Higher Integrability
	4. A Counterexample
	5. Higher Integrability Results and Applications
	6. Regularity Results for Nonhomogeneous Equations
	References

