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ABSTRACT. In this paper we prove higher integrability results for vector figld#, (B, E) €
L?7¢(Q,R") x L?>7¢(Q,R"), ¢ small, such thatliv B = 0, curl E = 0 satisfying a “reverse”
inequality of the type

1
|B> + |E|* < <K + K> (B,E) + |F|?

with K > 1andF € L"(Q,R"), » > 2 — . Applications to the theory of quasiconformal
mappings and partial differential equations are given. In particular, we prove regularity results
for very weak solutions of equations of the type

div a(z, Vu) = div F.
If |a(z, 2)]? + |2]? < (K + 1/K) (a(z, 2), 2), in the homogeneous case, our method provides a
new proof of the regularity result
we W25 (Q) = ue WhA(Q)

loc loc
wheree is sufficiently small. A result of higher integrability for functions verifying a reverse
integral inequality is used, and its optimality is proved.
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2 ALBERTO FIORENZA AND FLAVIA GIANNETTI

1. INTRODUCTION

The usual way to establish th&,.*"(Q), ¢ > 0, regularity of solutions: € W.*(Q) of
equations of the type

div a(x, Vu) = div F in

wherela(z, 2)|* + |2]* < (K + 1/K) {a(z, 2), 2), is to combine the Caccioppoli inequality

2
7[ |Vul?dz < c [7[ dx +7[ |F|*dx
Q 2Q 2Q

whereR is the sidelength of the culig C 2Q) C €, with the Poincaré-Sobolev inequality
n+2

N\ -
(7[ da:) < (7[ \Vu\n%r%dx) :
Q Q

to obtain the nonhomogeneous reverse Holder inequality

(1.1) 7{2 |Vulrdz < c{ [YQQ(|VU|2)rﬁ2dQ:} N +7£Q |F\2d:c} :

The higher integrability result then arises by using the well-known Giaquinta-Modica technique
[3,12].

The aim of this paper is to provide a different way to get regularity results, based on inequal-
ities for div-curl vector fields (see Theor¢m|2[1,[[5] 10]). Starting from these inequalities, under
the assumption of bounded distortion, we get directly a family of reverse type inequalities,
namely

U — UzgR
2R

’

U — UR

R

(1.2) 7{)(;%;‘2)1%

Sq&j[ (|Vul?) ~5dz + cs [7[ (!Vu|2)(1€>nild$] ' +037[ (|F|2)(1—a)dx'
2Q 2Q 20

Notice that, even if inequality (1.2) contains an extra term, by using our method we are able
to obtain a higher integrability result also feery weaksolutions of some nonlinear elliptic
equations by just assuming an integrability on the gradient below the natural exponent (see [8]).
Let us observe also thatif= 0 the exponent:/(n + 1) in inequality [1.2) is larger than the
exponent:/(n + 2) in inequality (1.1). Actually, inequality (1}2) follows from a more general
argument about vector fields of bounded distortion, which includes an analogous result of the
theory of quasiregular mappings (with the same exponent we det |n (1.2), see [7]).

After recalling known results in Sectignj 2, we prove a higher integrability result for func-
tions verifying a reverse-type inequality (Theorgm|3.1) in Sedtion 3. In Section 4 we give a
counterexample showing that generally the assumptions in Théorém 3.1 cannot be weakened.
In Sectior] b we prove a higher integrability result for finite distortion vector fields (see Propo-
sition[5.1), and we give some applications to the theory of quasiconformal mappings and to
the theory of regularity for very weak solutions of homogeneous nonlinear elliptic equations in
divergence form. Finally, in Secti¢n 6, we extend our method to the case of more general vector
fields in order to study the case of nonhomogeneous equations (see Thedgrem 6.1).
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2. PRELIMINARY RESULTS

In the following we will consider div-curl vector field® = (By,...,B,) € L{(R" R"),
E=(B,....,B,) € P(R",R"),1<p,g<o0,++1=1,ie

E, E.
CurlE:<6l—a]) =0
7 1 n

837]' 81‘2 ......
(2.1)
—~ 0B,
div B = - =0
iv oz,

in the sense of distributions.

The following basic estimates are establishedlin [5] (seelalso [10] for the present formulation).
We denote by),, () open cubes ifR™ with sides parallel to the coordinate axis, and2ythe
cube with the same center @fand double side-length.

Theorem 2.1.Let1 < p,q < oo be a Hblder conjugate pai% + % =1,andletl <r,s < o0

be a Sobolev conjugate pai}r,+ % =1+ % Then there exists a constant = ¢,(p, s) such
that for each cubé) such tha@ c @, C R™ we have

(2.2) ‘][ dx cns{ B0~ apdx} { 1B~ e)qu]
o |BIF |E|
1
+c, [7[ ‘E|(1—e)sdx:| [][ ’B|(1_E)7'dl} 7
2Q 2Q
—1g—1r—-1s—-1
whenevebd < 2¢ < min {p , 4 , ! , i } anddiv B =0, curl £ = 0.
P q T S

The following proposition by Giaquinta-Modical[3, 2] will be useful in the sequel.

Proposition 2.2. Letg € L*(Qy),a > 1landf € L"(Qo),r > « be two non-negative functions
and suppose that for every cugesuch tha@ c @, the following estimate holds

(2.3) j{ggad:cgb{(jécggdx)a—l—]écgfadx}+9]€Qg dx

with b > 1. There exist constanty = 0y(«, n), oo = oo(b, 0, o, 7, n) such that ifd < 6,, then

g€ LY7(Qy) forall 0 < o < 0y and
%
(L)
2Q

loc
wherec is a positive constant depending b, o, r, n.

Q=

(2.4) (7{2 gdx) < {(7[ ) o)

3. REVERSE HOLDER INEQUALITIES AND HIGHER INTEGRABILITY

This section is concerned with a variant of the result established in Propdsition 2.2. We
remark that in our assumption (B.1) we will consider a family of inequalities of the ftype (2.3) in
which both the exponent of integrability of the functigand a coefficient in the right hand side
depend ore. Nevertheless, even if Propositipn 2.2 cannot be apgiedori, in the theorem
we will prove that we can obtain a higher integrability result jaand an estimate of the type

23).
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4 ALBERTO FIORENZA AND FLAVIA GIANNETTI

Theorem 3.1.Letg € L*1=9)(Qp) and f € L"(Qp), 0 < e < 1,7 > 2(1 — ¢), be nonnegative
functions such that

n+l
(3.1) ][ g?1dx < 0157[ P19 dx + ¢, (][ gQO_S)ﬁd:ﬁ) + (7[ f2(1_€)dx>
Q 2Q 2Q 2Q

for every cube&) C 2Q) C @y, for some constanig > 0, c3 > 0.
Then there exist = &(cy,n) andn = 7(cy, co, 7, ¢,n) such that if0 < ¢ < g, theng €
L=E1(00), v 0 < < i and

loc
=T Peen] T
(7[ 92(1_5)+7/dx) (I—e)+n S . (7[ 92(1_5)dx) (I—e) n (7[ f2(1_5)+77dx> (I—2)+n ’
Q 2Q 2Q

wherec is a positive constant depending enr, , n.

Proof. Since the functiong. = ¢>!=9%1, f. = f2(179)551 verify the inequality

n+1
(3.2) fg;:d:v < 9 (7[ gad:E) + ( f;zdx> +0157[ g;%d:v
Q 2Q 2Q 2Q

we can apply Proposition 2.2 with = “* andb = ¢, . We getfy, = 6y(n) andoy =
oo(ca,r, £,m) such that, if|(3.) holds with;e < %, theng. € L7 (Qo) for every0 < o < oy,

; loc
l.e.
LH_'_O-

[92(178)#] " € Llloc(QO) V 0 < o< (o)
and

nt1 =, nt1 sy n+1 e
(3.3) <7[ gon +“dx) T e (7[ gor dx> + (7[ £ *“dx)
Q 2Q 2Q

with ¢ depending oms, 7, €, n.

Set
2noy

n+1

6o
0<ée< — O0<n<(l1—-¢
€< 50 n<(1-¢

If 0 <e<éandl <n <7, wehave

_ n—+1 n—+1
e<e<l—n <1l-—n
2noy 2noy
or, equivalently,

2l—e)+n<2(1—¢)

n n+1
n+1
Therefore we get

g€ Lin, " ™(Qo)
and inequality[(3J3) becomes
1 1 1
2(1—e)+ 2(1—¢) 2(1—e)+n
(7[ g2(15)+7]dx) K <c (7[ g2(1€)dl’) + <][ f2(15)+”dac> ' )
Q 2Q 2Q
O

Let us observe that upon closer inspection of the proof of Theprem 3.1, one can note that
the gain of integrability given by, = o¢(cs, r, €, n) is actually dependent only an, ﬁ, n.
Nevertheless, if = 0 a.e. inQ,, the number, and therefore alsg and¢, do not depend on

. This remark is crucial to prove the following.
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Corollary 3.2. Let0 < e < 1 andg € L2'79(Qy), Qo C R", be such that

n+1

7[g2(1_5)dx < 0167[ 2=y + ¢, (7[ 92(15)&%&) n
Q 2Q 2Q

for every cube&) C 20Q) C Q.
Then there exists = &(c;, n) such that ifd < ¢ < &, theng € L21*(Q,) and

loc

1 e
(3.4) (7[ g2(1+s)dx> 2(1+e) <ec <7[ 92(1E)dx> 20=9)
Q o

wherec is a positive constant depending o1 n.

Proof. Let us apply Theorem 3.1 witli = 0 a.e. inQy. If ¢ < min(g, Z), choosingy = 4e,
from inequality (3.1) we geg € L *(Qo) and inequality (3.4) holds. O

loc

4. A COUNTEREXAMPLE

Let us considelf, ¢ non-negative functions on a culgl satisfying assumptions of the type
of Theoren{ 3L withe; = 0, namely, f, g are such thay € L(Q,), f € L**(Q,) for some
a>1,A>1and

(4.2) <7{2 go‘dx) ’ < ajéQ gdx +b (7€Q fadq;> ‘ VQ, 2Q C Q.

In this case it is known[[6], that i is sufficiently close td, g € L}%(Qo) and
1

loc

(4.2) (7{2 g’\adx> & < ay (7€Q g’\d:(:)i + by (7€Q f’\o‘d:c) . ,

wherea, andb, are constants depending only o, a, b.
In the following we show that, even if it is still true thate L2(Qo) for any A < 1 (suffi-
ciently small), one cannot find any< 1, a, > 0, b, > 0 such that estimaté (4.2) holds for any

g € L*(Qo), f € L*(Qo) verifying ). If we consider a functiofi € ), ., L?(Qo) such
thath fedx = +o00 VQ C Q,, of course we havg € L (Q,) for A < 1, and it is possible
to show immediately that there are ag b, > 0 such that[(4]2) holds for any € L*(Qy), for

any f € L *(Qo) verifying (4.1).

We will proceed as follows: by a contradiction argument, we will be able to prove that there
exists)\ < 1 such thanyfunctiong, € L**(Qy), go > 0, satisfies a certain reverse inequality,
which is generally false.

Letg € C(Qo), g > 0. Then there exists > 0 such that

(7[ go‘dx) T < 27[ gdz  YQ, 2Q C Qp, diam2Q < é.
20 20

In fact,

sup g(z) < sup |g(z) —g(y)| +g(y) Vye€2Q
r€2Q z,y€2Q
and then, because of the uniform continuityyofve have

sup g < 2inf g.
2ng =55 g
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6 ALBERTO FIORENZA AND FLAVIA GIANNETTI

Let us divide(), into a finite number of disjoint cubes

N
Q=]
j=1

such that
2Q C Qo, diam2Q >0 = 3Q,:Q,; C20Q.
Now let us point out that iff is any function inL"(Q,) for everyl < r < «, but

f¥dr = 400 Vi=1,....N

then there exist
kmin{f, k}

fr = max -

T (7[ (min{, k})adw)m

J

such that

(][ (lfk> a)a 2> maxg > (7[ go‘dx)a V@, 2Q C Qo, diam2Q > 9.
2Q k Qo 2Q

Therefore

(7€Q gad"’:) é = 27€Q gdzr + (7€Q (%fk) a) . vQ, 2Q C Qo

i.e. g, 1 f satisfy inequality[(4]1).
Let us suppose to the contrary that for soine 1

L 1 Aa\ 3a
Md) < ( Ad>+b< (1>> VQ, 20Q C Qo.
(7{29 x ax 7€Qg T A fm kfk Q, 2Q C Qo

Letting £ tend to infinity, we have the inequality

(7[ 9Md$> * < ay (7[ gAdI) ) V@, 20 C Qo
Q 2Q

for every continuous function.
This inequality, by an approximation argument, extends to every fungtios L *(Q,),
go >0

(7[ 93“65%) < (7[ gédﬂc) VQ, 2Q C Qy,
Q 2Q

which is absurd, since this inequality implies a higher integrabilityfor

5. HIGHER INTEGRABILITY RESULTS AND APPLICATIONS

We start with the following regularity result for vector fields of bounded distortion
Proposition 5.1. LetQ C R",0 < e < 1and® = (E,B) € L*¢(Q,R") x L*¢(Q,R") be
such thatdiv B = 0, curl £ = 0 and

(5.1) |B(z)|> + |E(2)]* < (K + %) (B(z),E(z))  a.e.inf,
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whereK > 1. Then there exists = (K, n) such thatb € L °(Q,R") x L71#(Q,R") for all
0<e<éand

(7[ |<I>|2+5dx> + <c(7[ B2 de) T v, 0cq

wherec is a positive constant depending & n.

Proof. Let us fix the cube) such tha@ C Q. Applying Theorenj 2]1 witlp = ¢ = 2 and
r=s= 2, frominequality 5] .) we get

n+1

fWWHMWﬂms%meMHWWwaM(fum%wwwﬂ&m)"
Q 2Q 2Q

for ¢ sufficiently small. Substituting?® for | B|> + | E|? in the last inequality gives

n+1

][ ¢ Edx < Cn, K 57[ ¢* Fdx + Cn, K (7[ g(g_%)nild:c) )
Q 2Q 2Q

By Corollary[3.2 there exists = £(K, n) such that if0 < ¢ < , theng € L}*(Q) and

55 o
(7[ g2+26dx> S c (7[ g225dx)
Q 2Q

and then the assertion. O

Now we consider the equation on a bounded opeflsetR”,
Au =0 in QCR",
whereA is a differential operator defined by
Au = div a(z, Vu).

Herea : Q x R" — R™ is a mapping such that — a(z, z) is measurable for af € R™ and
z — a(x, z) is continuous for almost every € 2. Furthermore, we assume that there exists
K > 1 such that for almost every € (2 we have

2 2 1
5.2) ol )+ < (K + 1) ),

wherez, z are arbitrary vectors iR".
Let us prove the following result (originally proved in! [9], in the linear case, by using a
duality technique).

Corollary 5.2. Let0 < ¢ < 1 andu € W,?"*(Q) be a very weak solution of
div a(x, Vu) = 0.

Then there exists = (K, n) such thaw € W,2*"(Q) forall 0 < ¢ < z and

loc

(7[ ]Vu|2+2€dx) e < c<7[ |Vul*~ 2de) ) E,

wherec is a positive constant depending & n.
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Proof. Setting
E =Vu, B = a(z,Vu)
we havediv B = 0, curl E = 0 and, by [(5.P),

1
|E|? 4+ |B|* = |Vul® + |a(z, Vu)|? < (K + K) {a(x, Vu), Vu)

so thatE, B are div-curl fields of bounded distortion. Applying Propositjon| 5.1 we get the
assertion. OJ

Another interesting case to which Propositjon| 5.1 applies is when one considers a homeo-
morphism

f=U4L1%) QCR - R,
flrewh =) i=1,2,
f K-quasiregular K > 1, ie. |Df(z)]* < (K + %) J(x, f),

where|D f(x)| denotes the norm of the distributional differentialf () and J(z, f) is the
Jacobian determinant(z, f) = det D f(x).
Then, writing the Jacobiad (z, f) as (B, E), whereE = Vf! = (fL fl) and B =

x)Jy

(f3,—f2) we havediv B = 0, curl E = 0 and that[(5.11) holds. It follows that far suffi-
ciently smallf € W2t(Q R?), giving back in this way the celebrated theorem by Bojarski
[1]. Significant results about the Jacobian determinant ar€ in [7].

6. REGULARITY RESULTS FOR NONHOMOGENEOUS EQUATIONS
In this section we considdr = (F, B) € L*72¢(Q,R") x L?~*(Q,R") such that
(6.1) divB=0, curl E=0,

62 B+ B < (K + ) (B, B@) + PP,

whereF is a function inL" (2, R"™), r > 2 — 2¢, for ¢ sufficiently small.

Theorem 6.1.Let0 < ¢ < j and E, B vector fields as in (6]1),(6.2). Then there exist
£(K,n) andfj = (K, r,e,n) such that ifd < ¢ < &, then® = (E, B) € L, *""(Q,R") x
L225(Q, R™) forall 0 < n < 7 and

loc

726 +n 125 etn %
( \q>|2‘25+”dx) {(7[ |(I)|2 2€dl‘) + (7[ (|F| )2 2e+4 dl’) }7
Q 2Q

wherec is a positive constant depending énr, ¢, n.

Proof. Let us fix() a cube such th&(@ c 2 and set
t={z€Q|(B,E)>0ae.}

Q ={reQ|(B,E)<0ae}
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Let us observe that by (6.2), replacif¥g| with f, we have

_<B7E> / 1—
— 7 Ldr < (|IB||E|)" “dx
/Q BEEES /o

< [ (BF+|BP) s
.

< /Q |:(K+%) (B, E) +f2} Hdz

S f2_26dl'§/f2_2€d1}
Q- Q

and therefore

(B, E) / (B, E) / (B, E)
dr = dr + dx
/Q | BIF|E|° o+ |BIF|E|® o- |BIF|E]f

<B>E> dr — 2—25d
Z/Q+ (BE+ 1B + 2™ /Qf g

Applying Theorenj 2[1 witlp = ¢ = 2 andr = s = 2, for ¢ sufficiently small, we get

<B7E> 7[ 2 2 2\1—
dr < cpe BI"+ |E|* + “dx
72(|B|2+|E|2+f2)5 < caeg UBFFIER+ 1)

ntl
T, <7[ (|B|2+ |E|2_'_f2)(1€)nildx) _|_7[ f2_25d$.
2Q 2Q
By (6.2)
(B,E) > cx(IB]* + |E|* = f?) = ck(IB]* + |[E[* + f*) = 2cx f*

and therefore

]f (IBP + |EP + ) <dz
Q

< ok 8][ (|B]* + |Ef* + fA)' %dx + cn i (][ (|IB]> + |E> + f2)<1—€>nildx)
2Q 2Q

f? 7[ 2-2
+c 7[ dr + fe*dx
" 20 (IBI? + |E]* + f?)¢ 20

< Cn i 87[ (|B|2 + |E|2 + f2)1—6dx + Cn K (7[ (|B|2 + |E|2 + f2)(1—€)nff_1dx)

+ (ex + 1)7[ f*%de.
2Q

Settingg® = | B|> + |E|* + f2, the last inequality implies

n+1

][ ¢ Fdr < enx 57[ g dr + cn i <7[ g(2_28)nildx> + (ck + 1)7[ 2% .
Q 2Q 2Q 2Q
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By Theorenf 3.1 there exist= £(K,n) and7 = (K, r,e,n) such that ifd < ¢ < &, then
ge L2tQ) forall0 < n < 7and

loc

T=5eTn = et T=5eTn
(7[ gz—za+ndx) < (7[ gQ_Q’de) " (7[ (fQ)z 24 dx)
Q 2Q 2Q

and then the assertion. O

Let us consider now the following equation on a bounded opefi sefR™
(6.4) div a(z, Vu) = div F,
whereF € L"(Q), r > 2 — 2¢, for € sufficiently small and: : Q x R™ — R” is a mapping
satisfying the assumptions of Sect|gn 5.
Corollary 6.2. Let0 < ¢ < % andu € Wll’2‘25 Q) be a very weak solution of the equation

oc

(
(6.4). Then there exist = &(K,n) andf = 7(K,r,,n) such that if0 < ¢ < & then
we WA T(Q) forall 0 < 5 < 7and

loc

1 _1 1

2—2e+ 2—2¢ 2—2e+

(7[ |vu|“8+’7dx) "< (7[ |vuy“€dx> + <7[ yF|“E+’7dx) !
Q 2Q 2Q

for all cubes( such that@) C 2 and where: is a positive constant depending éhr, , n.

Proof. Setting
E = Vu, B = a(x,Vu) — F,
we have
|EP? + B < [Vul* + (|a(z, Vu)| + | F|)?
< 2(|a(x, Vu)|* + |[Vul?) + 2| F|?

1
<2 (K - E) {a(x, Vu), Vu) + 2| F?

=2 (K + %) (a(x, Vu) — F,Vu) + 2 (K + %) (F,Vu) + 2|F|%.

Since by Young's inequality

1
(F,Vu) =2(F,Vu) — (F,Vu) <2-2 (K—i— E) |F|? + 2 |Vul? — (F, Vu)

1
2 (K + %)

(la(z, Vu)[* +[Vul*) — (F, Vu)

1 1
<4(K+—=)|F?
<o g )t gy
1

4 <K + —) |F|? + (a(z, Vu), Vu) — (F, Vu)
)

IA
= X

|F|? + {a(z, Vu) — F, Vu)

=

4<K+—
we get

1
|E|2+\B|2§4<K+E> (B,E) + |F|?,

1 2
K+ — 2
s(K+ ) +
i.e. E,B are vector fields satisfying (6.1) and (6.2). From Theofem 6.1 we get the higher
integrability for| E|*> + | B|* and then fof Vu|; the estimate follows directly from (§.3). O
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Remark 6.3. Letu € W,.*(Q) be a solution of the equatio.4). Coroll6.2 asserts that the
functiong = |Vu| verifies inequality[(4]1) and, surprisingly, satisfies also inequality (4.2) with
A < 1 sufficiently small.

Remark 6.4. We note that, arguing as in the end of Secfipn 5, our result of higher integrability
applies also tg K, K')-quasiregular mappings (see [4]), i.e. functighgerifying

f=UN1):QCR - R?,
flfewt?=@Q) i=1,2,

|Df(z)]* < (K+ %) J(z, f)+ K'.
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