journal of inequalities in pure and
applied mathematics

http://jipam.vu-edu-au
issn: 1443-575b

Volume 8 (2007), Issue 2, Article 42, 8 pp. © 2007 Victoria Universiy. All ights reserved.

INEQUALITIES BETWEEN THE QUADRATURE OPERATORS AND ERROR
BOUNDS OF QUADRATURE RULES

SZYMON WASOWICZ

DEPARTMENT OFMATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF BIELSKO-BIALA
WILLOWA 2, 43-309 BELSKO-BIALA
POLAND
swasowicz@ath.bielsko.pl

Received 13 January, 2007; accepted 24 April, 2007
Communicated by L. Losonczi

ABSTRACT. The order structure of the set of six operators connected with quadrature rules is

established in the class of 3—convex functions. Convex combinations of these operators are
studied and their error bounds for four times differentiable functions are given. In some cases
they are obtained for less regular functions as in the classical results.
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1. INTRODUCTION

For f : [-1,1] — R we consider six operators approximating the integral mean value

1(5) =5 [ fwyie

They are
)=+ (f (—?) 10+ f (?)) ,
G:(1) =5 <f (—?) i (?)) ,
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L) 1= 3 1(0) + 5 (=) + F() + 1 (f (—@) + (@)) ,

20 * 180

S(f) = Z(/(=1) + f(1) + 3 1(0).

All of them are connected with very well known rules of the approximate integration: Cheby-
shev quadrature, Gauss—Legendre quadrature with two and three knots, Lobatto quadrature with
four and five knots and Simpson’s Rule, respectively (seele.g.[[4] 7, 8, 9, 10]).

Our goal is to establish all possible inequalities between the above operators in the class of
3—convex functions and to give the error bounds for convex combinations of the quadratures
considered. As a consequence, we obtain the error bound for the quadiaforefour times
differentiable functions instead of eight times differentiable functions as in the classical result.
We also improve similar results obtained|in [6] for the quadratgresnd L.

Let / C R be an interval. For the functiofi : I — R, a positive integekt > 2 and
x1,...,2, € I denote

1 1
T T
D(zy,...,zx; f) =
a:lf_Q .. x],z_Q
flx) oo flaw)

LetV(zy,...,x;) be the Vandermonde determinant of the terms involved. Then

. D(ay,. s f)
[xb o 71%7 f] T V(l’l, e ,.Tk>
is the divided difference of the functiofof orderk. Recall thatf is calledn—convexf
[x17"'>xn+2;f] 2 0
foranyzy,...,x, o € I. This is obviously equivalent to
D(xla"wanrQ;f) 2 0
foranyzxy,...,x,.» € I suchthatr; < --- < x,,. Clearlyl—convex functions are convex in

the classical sense. More information on the divided differences, the definition and properties
of convex functions of higher order can be foundin[1,/2,/3, 5].

In this paper only 3—convex functions are considered. By the above inequalities the function
f: I — Ris 3-convexff

D(zq,...,z5;

(1.1) (2. a5 f] = v(<x1,...,x5f) >0
foranyxy,..., x5 € I, or equivalently, iff

1 1 1 1 1

I T T3 Ty Ts

D(zy,... x5 f) = | a2 3 3 x5 2 | >0
U T T A
fle) fla2) flxs) flzs) f(as)

foranyzq,...,z5 € I suchthat; < --- < xs.
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2. INEQUALITIES BETWEEN QUADRATURE OPERATORS

In [6, Lemma 2.1] the inequality
VP (f(—u) + fluw) <a®(f(—v) + f(v)) + 20> —u?)f(0), O<u<v<1

was proved for a 3—convex functioh : [—1,1] — R (this is a simple consequence of the
inequality D(—v, —u, 0, u,v; f) > 0 obtained by 3—convexity). Denote by the even part
of f,i.e.
x)+ —X
ey = LI

Then we have
Remark 2.1. If f:[—1,1] — R is 3—convex then the inequality
(2.1) v fe(u) < u® fo(v) + (0% = u?) fe(0)
holds forany0 < u < v < 1.
Let us also record
Remark 2.2. If the functionf : [-1,1] — R is 3—convex then so if.
This property holds in fact for convex functions of any odd order (cf. [3]).
Remark 2.3. If 7 € {C, G2, Gs, L4, L5, S} thenT (f) =T (f.) forany f : [-1,1] — R.

Now we are ready to establish the inequalities between the operators connected with quadra-
ture rules.

Theorem 2.4.1f f : [—1,1] — R is 3—convex thed,(f) < C(f) < 7(f) < S(f), where
T € {Gs, L4, L5}. The operatorgjs, £, and L5 are not comparable (see the graph below).
S(f)

AR

(
La(f) Gs(f) Ls(f)
(

N

C(f)

Ga(f)

Proof. Let f : [—1,1] — R be a 3—convex function. By Remdrk .2 the functjoris 3—convex.
Then setting in[(2]1) the appropriate values:of we obtain

(1) Golf.) < C(f.) foru= L, v =2

(2) C(f.) < Gs(f.) foru = 2, v = ¥I5;

(3) Gs(fe) < S(fe) foru = \/Tﬁ v = 1 (this inequality was proved in[6, Proposition 2.2]);
4) Ly(fe) < S(fe) foru = \/?5 v = 1 (this inequality was also proved inl [6]);
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(5) Ls(f.) < S(f.) foru= Y2 v =1.

By RemarK 2.3 all the above inequalities hold for
Now we will prove the inequalityC(f) < Ls(f). Letp be the polynomial of degree at

most 3 mterpolatlngf at four knots—1, —\/TT, V2L 1. Since[ry,...,xs5;p] = 0 for any

x1,...,x5 € [—1,1], the functiong := f — p is also 3—convex and

g(-1) =g (—g) =g <g> =g(1) =0.

It is easy to observe th&t(p) = L5(p) = Z(p). Then by linearity
C(f) < Ls(f) <= Clg) < Ls(9).
By RemarK 2.8 it is enough to prowg.) < L;(g.), which is equivalent to
V2 1
2.2 el — | < =g
(2.2) g ( 5 | < 359:(0).

By 3—convexity ofg, we getD (—\/75, —@, 0, @, ‘/75; ge> > 0. Expanding this determinant
by the last row we arrive at

V2l V21 V2 V2 V21 V21 V2
((EnE G550 )e(9)

By computing the Vandermonde determinants we obtain

(2.3) 6ge <£> + g(0) > 0.

—_

\)

2

Similarly, by D (—@, 0, v, 2, 1,ge> > 0 we get

(24) _696 (?) - <1 - \/75) ge(o) Z 0

The inequalitieg (2]3) and (2.4) now |mpjy< ) < 0 < g.(0), which proves[(2]2).

The last inequality to prove i5(f) < L4(f). It seems to be more complicated than the other
inequalities. In the proof it is not enough to consider divided differences containing only the

knots of the quadratures involved. We need to consider some other pomts:L%é v = f
Arguing similarly as in the previous part of the proof we may assume that

191 (4)1(3)-1(5) o

Furthermore, by Remarks 2.2 gnd|2.3 it is enough to pédye) < Li(fe).
By 3—convexity and (1]1)

[_gaoauvval;fe} Z 07 [_ga()?uuvvl;fe] Z Oa

0.5 w015 20, 0.5, w01 1] 20
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Using the above inequalities and the determinantal forniula (1.1) we obtain after some simplifi-
cations

5RO SR (v) ()
Ot T T —w v o—u)(i—0) @2l —w)(—0)
. 2f(0) fe(u) B 2fe(v) fe(1)
Osy:= u +u(2u+v)(v—u)(1—u) 3v—u)(1—v) (2+v)(1—u)(l-0v)
_ 5/e(0) 5fo(u) fo(v) fo(1)
= T Wi —w @ —w)w-—wi-v)  C-w)l-wl—0)
o 2f(0) fe(u) _ 2fe(v) fe(1)
= = — =) —wl-0  C=0(-uwl=0)
Then
[,y 24" = AL0), felu), fo(v), f(D],
where
[ 5.2 25(2+5\/§;62¢5+\/ﬁ) _ 10(8+8\/§-2+72\/5+\/ﬁ) 5(18+9¢§;L62\/5+\/ﬁ) i
_2\/5 25(=1+45v2—v5+v10)  4(5+5v2+2v5+v10) 1545v243v5+v10
A _ 18 9 14

5\/§ 25(2+5v2+2v5+v10)  10(4+4v2+2V54+V10)  5(22+11v2+61/5+3/10)
12 9 76

25 25(3+5v2+3v5+v10)  4(5+5v2+2v/5+v10) 254+15v/245v5+3v/10
L 6 3 14

Using the elementary properties of determinants we can compute
320000

det A = —= (T + 6v2 + 3v5 + 2V10).
Hence

[£e(0), felw), fo(w), fo()]" = A7 [,y 28]
and

6(£4(fe) — C(fe)) ==2f(0)+5f(u) —4f(v)+ f(1) = ax + by + cz + dt
for somea, b, ¢, d. Notice that the approximate values of the entries of the matrdges ™ are

[—7.0711 11.6010 —9.9808 2.5238
A~ —4.4721 9.7184 —8.7580 2.2815
7.0711 34.8031 —19.2125 3.9776|°
4.4721  83.0898 —26.2740 4.7772
[—-0.2847 0.2710  0.0313  —0.0050
AL~ —0.1708 0.2154 —-0.0563 0.0343
—1.8470 2.4389 —0.3906 0.1362
—6.9203 9.4143 —-1.1984 0.3671

Then the constants b, ¢, d can be approximately computed:
6(L4(f.) — C(f.)) ~ 0.1831z + 0.1937y + 0.0199z + 0.0038¢ > 0,

by z,y,z,t > 0and we infelC(f.) < L4(f.).

We finish the proof with examples showing that the quadratdre<’; andgs are not com-
parable in the class of 3—convex functions. The table below contains the approximate values of
these operators.
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LS L) | Ls() | Gs(f) |
exp || 1.17524 | 1.17520 | 1.17517
cos || 0.84143 | 0.84147 | 0.84150

The functions:xp andcos are 3—convex ofi-1, 1] since their derivatives of the fourth order
are nonnegative opr-1, 1] (cf. [1,[2,3], cf. alsol[6, Theorems A, B]). O

3. ERROR BOUNDS OF CONVEX COMBINATIONS OF QUADRATURE RULES
Recall thatZ(f) = & [*, f(z)da. For f € C*([~1,1]) denote

2
M(f) = sup{!f(4)(x)| cx € [—1, 1]}
We start with two lemmas.

Lemma 3.1. Let 7 be a linear operator acting on functions mappipgl, 1] into R such that
T (g) = Z(g) for g(x) = z* and Gy(f) < T (f) for any 3—convex functioffi : [—1,1] — R.

Then
M
() - 2()| < 12

forany f € C*([-1,1]).

Proof. Let f € C*([—1,1]). Itis well known (cf. [4]8]) thatZ(f) = G>(f) + % for some
5 S (_]—a ]-)
Assume for a while thaf is 3—convex. The(f) — £2© = G,(f) < T(f). Therefore

70

M(f)
(3.1) I(H) = T(f) €

Now let f € C*([—1,1]) be an arbitrary function and lg{z) := %4)"”4 Then|f®(z)| <
gW(x), v € [-1,1], whence(g — f)® > 0and(g + )™ > 0 on[-1,1]. This implies that
g — fandg + f are 3—convex of+-1, 1] (cf. [1,[2,[3], cf. alsol[6, Theorem B]). It is easy to see
thatM (g — f) < 2M(f)andM (g + f) < 2M(f). We infer by 3—convexity andl (3.1) that

M(g—f) _ M(f) M(g+f) _ M(f)

Z(g—f)-T(g—f) < and Z(g+f)-T(g+f) <

270 - 135 270 - 135
Since the operator$, 7 are linear and (¢g) = Z(g) by the assumption, then
M(f) M(f)
— < M7 — < M7
IN+T() < 45z and  I() = T(f) < ==
which concludes the proof. O

Lemma 3.2. Let 7 be a linear operator acting on functions mappipgl, 1] into R such that
T(g) = Z(g) for g(x) = z* andC(f) < T(f) for any 3—convex functiosfi : [-1,1] — R.

Then
M
() - 2(5)| < 5L

forany f € C*([-1,1]).

Proof. Let f € C*([—1,1]). Itis well known (cf. [4]7]) thatZ(f) = C(f) + % for some
¢ € (—1,1). The rest of the proof is exactly the same as above. O
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Let
T :=aGy +0C+cS+ MLy + N L5+ N3G
be an arbitrary convex combination of the operators considered in this paper. Observe that it
can be also written as
T =aGy +bC + ¢S + dU,
wherea, b,c,d > 0,a+ b+ ¢+ d = 1 and/ is a convex combination of the operatdsg L5
andgs. Forg(x) = z* we compute

Golg) =7, Clo)=7, Slg)=; and
@wﬁuam:gmnzﬂng

Then7 (g) = Z(g) if and only if
a b ¢ d 1
9 63 55
Bya,b,c,d >0,a+ b+ c+ d =1, the solution of this inequality is the following

(a=—2%+3c+2d,
b:§—4c—§d,
(3.2) 0<e<E,
0<d<l,

| 1-5c<d<1-3c

Fora = 0 we get by Theorerth 2.8(f) < 7 (f) for any 3—convex functiorf : [-1,1] — R
and by the above inequalities

4 1

Then by Lemma 3]2 we obtain:
Corollary 3.3. Let0 < d < 1and

4 1
T(f) = (L= dC(F) + - (1= d)S(f) + dU(f),
wherel/ is an arbitrary convex combination of the operatdlg L5 andgs. If f € C4([—1, 1])

then

M)
T() -] < 5

Fora > 0 we get by Theorem 2/8,(f) < 7 (f) for any 3—convex functiorf : [-1,1] — R
and the inequality (f) < C(f) is possible. Then by Lemnja 8.1 we obtain

Corollary 3.4. Leta > 0, b, ¢, d fulfil the inequalitieg[3.2) and
T = aGy + bC + ¢S + dU,
wherel{ is an arbitrary convex combination of the operatdlg £5 andGs. If f € C4([—1, 1])

then y
() - 2(5)| < M0,

By Corollary[3.3 we obtain immediately (fofr= 1):
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Corollary 3.5. If 7 is an arbitrary convex combination of the operatdlg £5; andGs; then

M(f)
T -7 < 5

forany f € C*([-1,1]).

This result improves the error bounds obtained in [6] for the quadratlyesdgs, where
the error bound Wa%. Observe that the above corollary applies to the quadraire

Corollary 3.6. If f € C*([~1,1]) then|Ls(f) — Z(f)| < 2.

— 360

This new result gives the error bound for the quadratfiyefor four times differentiable
functions instead of eight times differentiable functions as in the classical result(see [4, 9]).
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