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Abstract: The order structure of the set of six operators connected with quadrature rules
is established in the class of 3–convex functions. Convex combinations of these
operators are studied and their error bounds for four times differentiable functions
are given. In some cases they are obtained for less regular functions as in the
classical results.
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1. Introduction

For f : [−1, 1] → R we consider six operators approximating the integral mean
value

I(f) :=
1

2

∫ 1

−1

f(x)dx.

They are

C(f) :=
1

3

(
f

(
−
√

2

2

)
+ f(0) + f

(√
2

2

))
,

G2(f) :=
1

2

(
f

(
−
√

3

3

)
+ f

(√
3

3

))
,

G3(f) :=
4

9
f(0) +

5

18

(
f

(
−
√

15

5

)
+ f

(√
15

5

))
,

L4(f) :=
1

12

(
f(−1) + f(1)

)
+

5

12

(
f

(
−
√

5

5

)
+ f

(√
5

5

))
,

L5(f) :=
16

45
f(0) +

1

20

(
f(−1) + f(1)

)
+

49

180

(
f

(
−
√

21

7

)
+ f

(√
21

7

))
,

S(f) :=
1

6

(
f(−1) + f(1)

)
+

2

3
f(0).

All of them are connected with very well known rules of the approximate integra-
tion: Chebyshev quadrature, Gauss–Legendre quadrature with two and three knots,
Lobatto quadrature with four and five knots and Simpson’s Rule, respectively (see
e.g. [4, 7, 8, 9, 10]).
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Our goal is to establish all possible inequalities between the above operators in
the class of 3–convex functions and to give the error bounds for convex combina-
tions of the quadratures considered. As a consequence, we obtain the error bound
for the quadratureL5 for four times differentiable functions instead of eight times
differentiable functions as in the classical result. We also improve similar results
obtained in [6] for the quadraturesG3 andL4.

Let I ⊂ R be an interval. For the functionf : I → R, a positive integerk ≥ 2
andx1, . . . , xk ∈ I denote

D(x1, . . . , xk; f) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

x1 . . . xk

...
...

...

xk−2
1 . . . xk−2

k

f(x1) . . . f(xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let V (x1, . . . , xk) be the Vandermonde determinant of the terms involved. Then

[x1, . . . , xk; f ] :=
D(x1, . . . , xk; f)

V (x1, . . . , xk)

is the divided difference of the functionf of orderk. Recall thatf is calledn–convex
if

[x1, . . . , xn+2; f ] ≥ 0

for anyx1, . . . , xn+2 ∈ I. This is obviously equivalent to

D(x1, . . . , xn+2; f) ≥ 0

for anyx1, . . . , xn+2 ∈ I such thatx1 < · · · < xn+2. Clearly1–convex functions
are convex in the classical sense. More information on the divided differences, the
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definition and properties of convex functions of higher order can be found in [1, 2,
3, 5].

In this paper only 3–convex functions are considered. By the above inequalities
the functionf : I → R is 3–convexiff

(1.1) [x1, . . . , x5; f ] =
D(x1, . . . , x5; f)

V (x1, . . . , x5)
≥ 0

for anyx1, . . . , x5 ∈ I, or equivalently, iff

D(x1, . . . , x5; f) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1

x1 x2 x3 x4 x5

x2
1 x2

2 x2
3 x2

4 x2
5

x3
1 x3

2 x3
3 x3

4 x3
5

f(x1) f(x2) f(x3) f(x4) f(x5)

∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0

for anyx1, . . . , x5 ∈ I such thatx1 < · · · < x5.
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2. Inequalities Between Quadrature Operators

In [6, Lemma 2.1] the inequality

v2
(
f(−u) + f(u)

)
≤ u2

(
f(−v) + f(v)

)
+ 2(v2 − u2)f(0), 0 < u < v ≤ 1

was proved for a 3–convex functionf : [−1, 1] → R (this is a simple consequence
of the inequalityD(−v,−u, 0, u, v; f) ≥ 0 obtained by 3–convexity). Denote byfe

the even part off , i.e.

fe(x) =
f(x) + f(−x)

2
.

Then we have

Remark1. If f : [−1, 1] → R is 3–convex then the inequality

(2.1) v2fe(u) ≤ u2fe(v) + (v2 − u2)fe(0)

holds for any0 < u < v ≤ 1.

Let us also record

Remark2. If the functionf : [−1, 1] → R is 3–convex then so isfe.

This property holds in fact for convex functions of any odd order (cf. [3]).

Remark3. If T ∈ {C,G2,G3,L4,L5,S} thenT (f) = T (fe) for anyf : [−1, 1] →
R.

Now we are ready to establish the inequalities between the operators connected
with quadrature rules.

Theorem 2.1. If f : [−1, 1] → R is 3–convex thenG2(f) ≤ C(f) ≤ T (f) ≤ S(f),
whereT ∈ {G3,L4,L5}. The operatorsG3,L4 andL5 are not comparable (see the
graph on the following page).
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Proof. Let f : [−1, 1] → R be a 3–convex function. By Remark2 the functionfe is
3–convex. Then setting in (2.1) the appropriate values ofu, v we obtain

1. G2(fe) ≤ C(fe) for u =
√

3
3

, v =
√

2
2

;

2. C(fe) ≤ G3(fe) for u =
√

2
2

, v =
√

15
5

;

3. G3(fe) ≤ S(fe) for u =
√

15
5

, v = 1 (this inequality was proved in [6, Proposi-
tion 2.2]);

4. L4(fe) ≤ S(fe) for u =
√

5
5

, v = 1 (this inequality was also proved in [6]);

5. L5(fe) ≤ S(fe) for u =
√

21
7

, v = 1.
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By Remark3 all the above inequalities hold forf .
Now we will prove the inequalityC(f) ≤ L5(f). Let p be the polynomial of de-

gree at most3 interpolatingf at four knots−1,−
√

21
7

,
√

21
7

, 1. Since[x1, . . . , x5; p] =
0 for anyx1, . . . , x5 ∈ [−1, 1], the functiong := f − p is also 3–convex and

g(−1) = g

(
−
√

21

7

)
= g

(√
21

7

)
= g(1) = 0.

It is easy to observe thatC(p) = L5(p) = I(p). Then by linearity

C(f) ≤ L5(f) ⇐⇒ C(g) ≤ L5(g).

By Remark3 it is enough to proveC(ge) ≤ L5(ge), which is equivalent to

(2.2) ge

(√
2

2

)
≤ 1

30
ge(0).

By 3–convexity ofge we getD
(
−
√

2
2

,−
√

21
7

, 0,
√

21
7

,
√

2
2

; ge

)
≥ 0. Expanding this

determinant by the last row we arrive at(
V

(
−
√

21

7
, 0,

√
21

7
,

√
2

2

)
+ V

(
−
√

2

2
,−
√

21

7
, 0,

√
21

7

))
ge

(√
2

2

)

+ V

(
−
√

2

2
,−
√

21

7
,

√
21

7
,

√
2

2

)
ge(0) ≥ 0.

By computing the Vandermonde determinants we obtain

(2.3) 6ge

(√
2

2

)
+ ge(0) ≥ 0.
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Similarly, byD
(
−
√

21
7

, 0,
√

21
7

,
√

2
2

, 1; ge

)
≥ 0 we get

(2.4) −6ge

(√
2

2

)
−

(
1−

√
2

2

)
ge(0) ≥ 0.

The inequalities (2.3) and (2.4) now implyge

(√
2

2

)
≤ 0 ≤ ge(0), which proves (2.2).

The last inequality to prove isC(f) ≤ L4(f). It seems to be more complicated
than the other inequalities. In the proof it is not enough to consider divided differ-
ences containing only the knots of the quadratures involved. We need to consider
some other points. Letu =

√
5

5
, v =

√
2

2
. Arguing similarly as in the previous part of

the proof we may assume that

f
(
−v

2

)
= f

(
−u

2

)
= f

(u

2

)
= f

(v

2

)
= 0.

Furthermore, by Remarks2 and3 it is enough to proveC(fe) ≤ L4(fe).
By 3–convexity and (1.1)[

−u

2
, 0, u, v, 1; fe

]
≥ 0,

[
−v

2
, 0, u, v, 1; fe

]
≥ 0,[

0,
u

2
, u, v, 1; fe

]
≥ 0,

[
0,

v

2
, u, v, 1; fe

]
≥ 0.

Using the above inequalities and the determinantal formula (1.1) we obtain after
some simplifications

0 ≤ x := −5fe(0)

v
+

5fe(u)

3(v − u)(1− u)
− fe(v)

v(u + 2v)(v − u)(1− v)

+
fe(1)

(u + 2)(1− u)(1− v)
,
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0 ≤ y := −2fe(0)

u
+

fe(u)

u(2u + v)(v − u)(1− u)
− 2fe(v)

3(v − u)(1− v)

+
fe(1)

(2 + v)(1− u)(1− v)
,

0 ≤ z :=
5fe(0)

v
+

5fe(u)

(v − u)(1− u)
− fe(v)

v(2v − u)(v − u)(1− v)

+
fe(1)

(2− u)(1− u)(1− v)
,

0 ≤ t :=
2fe(0)

u
+

fe(u)

u(2u− v)(v − u)(1− u)
− 2fe(v)

(v − u)(1− v)

+
fe(1)

(2− v)(1− u)(1− v)
.

Then
[x, y, z, t]T = A [fe(0), fe(u), fe(v), fe(1)]T ,

where

A =


−5
√

2 25(2+5
√

2+2
√

5+
√

10)
36

−10(8+8
√

2+2
√

5+
√

10)
27

5(18+9
√

2+2
√

5+
√

10)
76

−2
√

5 25(−1+5
√

2−
√

5+
√

10)
18

−4(5+5
√

2+2
√

5+
√

10)
9

15+5
√

2+3
√

5+
√

10
14

5
√

2 25(2+5
√

2+2
√

5+
√

10)
12

−10(4+4
√

2+2
√

5+
√

10)
9

5(22+11
√

2+6
√

5+3
√

10)
76

2
√

5 25(3+5
√

2+3
√

5+
√

10)
6

−4(5+5
√

2+2
√

5+
√

10)
3

25+15
√

2+5
√

5+3
√

10
14

 .

Using the elementary properties of determinants we can compute

det A = −320000

10773
(7 + 6

√
2 + 3

√
5 + 2

√
10).
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Hence [
fe(0), fe(u), fe(v), fe(1)

]T
= A−1

[
x, y, z, t

]T
and

6
(
L4(fe)− C(fe)

)
= −2f(0) + 5f(u)− 4f(v) + f(1) = ax + by + cz + dt

for somea, b, c, d. Notice that the approximate values of the entries of the matrices
A, A−1 are

A ≈


−7.0711 11.6010 −9.9808 2.5238
−4.4721 9.7184 −8.7580 2.2815
7.0711 34.8031 −19.2125 3.9776
4.4721 83.0898 −26.2740 4.7772

 ,

A−1 ≈


−0.2847 0.2710 0.0313 −0.0050
−0.1708 0.2154 −0.0563 0.0343
−1.8470 2.4389 −0.3906 0.1362
−6.9203 9.4143 −1.1984 0.3671

 .

Then the constantsa, b, c, d can be approximately computed:

6
(
L4(fe)− C(fe)

)
≈ 0.1831x + 0.1937y + 0.0199z + 0.0038t ≥ 0,

by x, y, z, t ≥ 0 and we inferC(fe) ≤ L4(fe).
We finish the proof with examples showing that the quadraturesL4, L5 andG3

are not comparable in the class of 3–convex functions.

http://jipam.vu.edu.au
mailto:swasowicz@ath.bielsko.pl
http://jipam.vu.edu.au


Quadrature Rules, Inequalities
and Error Bounds

Szymon Wa̧sowicz

vol. 8, iss. 2, art. 42, 2007

Title Page

Contents

JJ II

J I

Page 12 of 18

Go Back

Full Screen

Close

The table below contains the approximate values of these operators.

f L4(f) L5(f) G3(f)

exp 1.17524 1.17520 1.17517
cos 0.84143 0.84147 0.84150

The functionsexp andcos are 3–convex on[−1, 1] since their derivatives of the
fourth order are nonnegative on[−1, 1] (cf. [1, 2, 3], cf. also [6, Theorems A, B]).

http://jipam.vu.edu.au
mailto:swasowicz@ath.bielsko.pl
http://jipam.vu.edu.au


Quadrature Rules, Inequalities
and Error Bounds

Szymon Wa̧sowicz

vol. 8, iss. 2, art. 42, 2007

Title Page

Contents

JJ II

J I

Page 13 of 18

Go Back

Full Screen

Close

3. Error Bounds of Convex Combinations of Quadrature Rules

Recall thatI(f) = 1
2

∫ 1

−1
f(x)dx. Forf ∈ C4

(
[−1, 1]

)
denote

M(f) := sup
{∣∣f (4)(x)

∣∣ : x ∈ [−1, 1]
}

.

We start with two lemmas.

Lemma 3.1. LetT be a linear operator acting on functions mapping[−1, 1] into R
such thatT (g) = I(g) for g(x) = x4 andG2(f) ≤ T (f) for any 3–convex function
f : [−1, 1] → R. Then ∣∣T (f)− I(f)

∣∣ ≤ M(f)

135

for anyf ∈ C4
(
[−1, 1]

)
.

Proof. Let f ∈ C4
(
[−1, 1]

)
. It is well known (cf. [4, 8]) thatI(f) = G2(f) + f (4)(ξ)

270
for someξ ∈ (−1, 1).

Assume for a while thatf is 3–convex. ThenI(f) − f (4)(ξ)
270

= G2(f) ≤ T (f).
Therefore

(3.1) I(f)− T (f) ≤ M(f)

270
.

Now let f ∈ C4
(
[−1, 1]

)
be an arbitrary function and letg(x) := M(f)x4

24
. Then∣∣f (4)(x)

∣∣ ≤ g(4)(x), x ∈ [−1, 1], whence(g−f)(4) ≥ 0 and(g+f)(4) ≥ 0 on [−1, 1].
This implies thatg − f andg + f are 3–convex on[−1, 1] (cf. [1, 2, 3], cf. also [6,
Theorem B]). It is easy to see thatM(g − f) ≤ 2M(f) andM(g + f) ≤ 2M(f).
We infer by 3–convexity and (3.1) that
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I(g − f)− T (g − f) ≤ M(g − f)

270
≤ M(f)

135
and

I(g + f)− T (g + f) ≤ M(g + f)

270
≤ M(f)

135
.

Since the operatorsT , I are linear andT (g) = I(g) by the assumption, then

−I(f) + T (f) ≤ M(f)

135
and I(f)− T (f) ≤ M(f)

135
,

which concludes the proof.

Lemma 3.2. LetT be a linear operator acting on functions mapping[−1, 1] into R
such thatT (g) = I(g) for g(x) = x4 andC(f) ≤ T (f) for any 3–convex function
f : [−1, 1] → R. Then ∣∣T (f)− I(f)

∣∣ ≤ M(f)

360

for anyf ∈ C4
(
[−1, 1]

)
.

Proof. Let f ∈ C4
(
[−1, 1]

)
. It is well known (cf. [4, 7]) thatI(f) = C(f) + f (4)(ξ)

720
for someξ ∈ (−1, 1). The rest of the proof is exactly the same as above.

Let
T := aG2 + bC + cS + λ1L4 + λ2L5 + λ3G3

be an arbitrary convex combination of the operators considered in this paper. Ob-
serve that it can be also written as

T = aG2 + bC + cS + dU ,

wherea, b, c, d ≥ 0, a+b+c+d = 1 andU is a convex combination of the operators
L4, L5 andG3. Forg(x) = x4 we compute
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G2(g) =
1

9
, C(g) =

1

6
, S(g) =

1

3
and

L4(g) = L5(g) = G3(g) = I(g) =
1

5
.

ThenT (g) = I(g) if and only if

a

9
+

b

6
+

c

3
+

d

5
=

1

5
.

By a, b, c, d ≥ 0, a + b + c + d = 1, the solution of this inequality is the following

(3.2)



a = −3
5

+ 3c + 3
5
d,

b = 8
5
− 4c− 8

5
d,

0 ≤ c ≤ 2
5
,

0 ≤ d ≤ 1,

1− 5c ≤ d ≤ 1− 5
2
c.

For a = 0 we get by Theorem2.1 C(f) ≤ T (f) for any 3–convex functionf :
[−1, 1] → R and by the above inequalities

b =
4

5
(1− d), c =

1

5
(1− d), 0 ≤ d ≤ 1.

Then by Lemma3.2we obtain:

Corollary 3.3. Let0 ≤ d ≤ 1 and

T (f) =
4

5
(1− d)C(f) +

1

5
(1− d)S(f) + dU(f),

whereU is an arbitrary convex combination of the operatorsL4, L5 and G3. If
f ∈ C4

(
[−1, 1]

)
then
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∣∣T (f)− I(f)
∣∣ ≤ M(f)

360
.

For a > 0 we get by Theorem2.1 G2(f) ≤ T (f) for any 3–convex function
f : [−1, 1] → R and the inequalityT (f) < C(f) is possible. Then by Lemma3.1
we obtain

Corollary 3.4. Leta > 0, b, c, d fulfil the inequalities(3.2) and

T = aG2 + bC + cS + dU ,

whereU is an arbitrary convex combination of the operatorsL4, L5 and G3. If
f ∈ C4

(
[−1, 1]

)
then ∣∣T (f)− I(f)

∣∣ ≤ M(f)

135
.

By Corollary3.3we obtain immediately (ford = 1):

Corollary 3.5. If T is an arbitrary convex combination of the operatorsL4, L5 and
G3 then ∣∣T (f)− I(f)

∣∣ ≤ M(f)

360
for anyf ∈ C4

(
[−1, 1]

)
.

This result improves the error bounds obtained in [6] for the quadraturesL4 and
G3, where the error bound wasM(f)

90
. Observe that the above corollary applies to the

quadratureL5.

Corollary 3.6. If f ∈ C4
(
[−1, 1]

)
then

∣∣L5(f)− I(f)
∣∣ ≤ M(f)

360
.

This new result gives the error bound for the quadratureL5 for four times differ-
entiable functions instead of eight times differentiable functions as in the classical
result (see [4, 9]).
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