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ABSTRACT. In this paper, we obtain shaf’ estimates of two classes of maximal operators
related to rough singular integrals and Marcinkiewicz integriese estimates will be used to
obtain similar estimates for the related singular integrals and Marcinkiewicz integrals. By the
virtue of these estimates and extrapolation we obtainZthéoundedness of all the aforemen-
tioned operators under rather weak size conditions. Our results represent significant improve-
ments as well as natural extensions of what was known previously.
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1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, I®&", n > 2, be then-dimensional Euclidean space a®¢! be the
unit sphere iR equipped with the normalized Lebesgue surface meaguralso, we let¢’
denotet/ €| for ¢ € R™\{0} andp’ denote the exponent conjugateptaghatisl/p+1/p" = 1.

Let Ko n(x) = Q2 )h(|z|) |x| ™", whereh : [0, o) — C is a measurable function artl
is a function defined o8"~! with Q € L'(S"~!) and

(1.1) /S Q () do (z) = 0.
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Forl <~ < oo, letA (R.) denote the collection of all measurable functians|0, co) —

.. 1/~
C satisfying sup (% fOR \h(t)|’ydt) < 0.
R>0
Define the singular integral operat6y, 5, the parametric Marcinkiewicz integral operator
Mg, and their related maximal operatd, %) and/\/lg’*) by

1.2) Sonf(x) =pV. [ flz—u)Kon(u)du,
..
0 2 3
(1.3) Manf(z) = (/ ‘t‘ﬁ flz —u) ul” Kqp(u)du %) ,
0 Ju|<t
(1.4) SO f () = sup 1Sanf(@)],
(1.5) W@Mf@%=%pM«mﬂwh

wheref € S(R"), p = o + it (0,7 € R with ¢ > 0) and the supremum is taken over the set
of all radial functionsh with 1 € LY(R.., dt/t) and|[h|| ;- g, a/py < 1-

If h(t) = 1andp = 1, we shall denot&, ;, by S and Mg, by Mg, which are respectively
the classical singular integral operator of Calderon-Zygmund and the classical Marcinkiewicz
integral operator of higher dimension.

The study of the mapping properties 6§, M and their extensions has a long history.
Readers are referred tal [71,! [3],! [4],_[16], 1181,/ [5], 1101, 122[, [24], [25] and the references
therein for applications and recent advances on the study of such operators.

Let us now recall some results which will be relevant to our current study. We start with the
following results on singular integrals:

Theorem 1.1.If 2 satisfies one of the following conditions, th&r,, is bounded orl?(R")
forl <p < oco.

(@) Q € L(logL)(S*™ ') andh € A (R;) for somey > 1. Moreover, the condition
Q € L(log L)(S™!') is an optimal size condition for thé”? boundedness o, (see
[13] inthe casei(t) = 1 and sed10]).

(b) Q € L(log L)/ (8"~ ') andh € L"(R,,dt/t) for somey > 1 (see[2] and sed8] in
the casey = 2).

(©) @ € B{"(s"!) for someg > 1andh € A_(R.) for somey > 1. Moreover, the
condition € B{"”(S"~1) is an optimal size condition for the” boundedness of,
(see[4] and [9]).

d) Q € B ¥ (8m1) for someg > 1 andh € LA(R,, dt/t) ([9]).

Here L(log L)*(S™!) (for « > 0) is the class of all measurable functionsn S"~! which
satisfy

|mMmmwg=/ Qy)| log™ (2 + 9(y) do(y) < o0

Sn—1

andBéO’”)(S"*), v > —1, is a special class of block spaces whose definition will be recalled
in Sectior 2.
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Theorem 1.2.1f (2 satisfies one of the following conditions, théf, , is bounded orl”(R™)
forl <p < oco.
(@) Q € L(log L)/?(S"!) andh = 1. Moreover, the exponent/2 is the best possible
([26], [71).
(b) @ € B2 (S"1) for someq > 1 andh = 1. Moreover, the conditiof €
B~/ (81 is an optimal size condition for the* boundedness o, ([3]).
(€) Q € Llog L)Y"(S" ), h € L"(Ry,dt/t),1 < v < 2andy < p < ocoo0rf €
L(log L)Y?(S™ ' h € L"(R,,dt/t),2 < v < oo and2 < p < oo ([6]).

On the other hand, the study of the related maximal ope%fd? has attracted the attention
of many authors. See for example, [1[], [5], [6], [8], [2], [27].

Theorem 1.3.1f 2 satisfies one of the following conditions, thﬁéﬁ’*) is bounded orL?(R").

@ Qe (S, (ny)/(ny—1) <p<ocandl <~ < 2. Moreover, the range af is
the best possiblfL4].

(b) Q@ € B P (81 for someq > 1,7 = 2,2 < p < oo. Moreover, the condition
Q € B /2 (s1) is an optimal size condition for the? boundedness of") to
hold (], [9]).

(€) Q € L(log L) (S*™1),~4' < p < co. Moreover, the exponertt/2 is the best possible
for the L2 boundedness &) to hold (sed8] for v = 2 and[2] for y # 2).

In view of the above results, the following question is very natural:

Problem 1.1. Is there any analogue of Theor¢m|1.1(d) and Thedrein 1.3(b) in theycgse?
Is there an analogy of Theordm [L.2¢d} there any room for improvement of the rangepah
both Theorerp 1]2(c) and Theorém|1.3(c)?

The purpose of this paper is two-fold. First, we answer the above questions in the affirmative.
Second, we present a unified approach different from the ones employed in previous papers (see

for example,[[1],1[2], [6], [8], [9]) in dealing with the operatofs, ;,, Mg 1, Sg’*) and/\/lg’*)
when the kernel functiof® belongs to the block spac@éo’“)(snfl) (forv > —1) or {2 belongs

to the classL(log L)*(S™!) (for o > 0). This approach will mainly rely on obtaining some
delicate shar@? estimates and then applying an extrapolation argument.
Now, let us state our main results.

Theorem 1.4. Suppose thae L(S"!) for somel < ¢ < co. Then

q 1y
e = (q - 1) 12 zaggnsy 11l o

holds for(nay’)/(Y'n+na—+") < p < oo andl < v < 2, wherea = max{2, ¢'}. Moreover,
the exponent /4’ is the best possible in the case-= 2.

(1.6) |s§ )

Theorem 1.5. Leta and(2 be as in Theorefn 1.4 and let< v < co. Then

(L.7) [ME2)

q

holds for(naf3)/(6n + na — ) < p < oo, wheres = max{2,~'}. Moreover, the exponent
1/ is the best possible in the case-= 2.

q 1/8
LP(RN) S Cp ( _ 1) HQHLQ(sn—l) ||f“Lp(Rn)
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Theorem 1.6. Suppose thae L¢(S"'),1 < ¢ < 2, andh € L' (R, dt/t) for somel <
v < oo. Then

18  ISen(Nllme < Co @ =D Nl s e 190 asny 11l ogreny
forl < p < ooand

-1
(19 IMan(Hllpme < Cola =1 PRl arje 19 pasny 1] oy

for (nBq')/(Bn+ng — B) < p < 0.

By the conclusions from Theoreis 1.4 —]1.6 and applying an extrapolation method, we get
the following results:

Theorem 1.7.

(@ If Qe L(log L)W(S”‘l) and1 < v < 2, the operatorS)"* is bounded orLr(R™)
for2 < p < oc;

(b) If Qe B"/7"Y(8m-1)and1 < v < 2, the operatorS$™ is bounded or.r(R") for
2 < p <o ,

) If Qe LlogL)"" (8" 1) andh € LY(R,,dt/t) for somel < v < oo, the operator
Sa.p is bounded ol ?(R™) for 1 < p < oo;

(d) If B 7Y(8m1) for somey > 1 andh € LY(R.,dt/t) for somel < v < oo, the
operatorSg, 5, is bounded or.?(R") for 1 < p < oc.

Theorem 1.8.Let]l < v < oo and g = max{2,~'}.

@) If Qe LlogL)"’(S™ ') andl < v < oo, the operator/\/lg’*) is bounded orl.?(R™)
for2 <p < oc;

(b) If © e BPYPU(s" 1) and1 < v < oo, the operatorM; ™ is bounded orLr(R™)
for2 <p < .

) If Qe L(logL)"’(S™1)andh € L"(R.,dt/t) for somel < v < oo, the operator
Mg, is bounded orL?(R™) for 2 < p < oo;

(d) If BYP7D(sn-1) for someg > 1 andh € LY(R.,dt/t) for somel < v < oo, the
operatorMg, , is bounded or.?(R™) for 2 < p < occ.

Remark 1.
(1) Foranyg > 1,0 < a < fand—1 < v, the following inclusions hold and are proper:

LY(S™") c L(log L)’ (S™*) c L(log L)" (8",
Lz ) c BP(s ) forany — 1 < v,
r>1

BY)(8m1) ¢ BIO(S" ) forany — 1 < vy < vy,
L"(Ry,dt/t) C A (Ry) forl < < oo.

The question regarding the relationship betwésh’ " andL(log L)" overS™~! (for
v > 0) remains open.

(2) The L boundedness &) for (nay')/(y'n + na —+') < p < oo andQe LI(S"1)
was proved in([1] only in the case = 2, but the importance of Theorem [L.4 lies in
the fact that the estimate (1.6) in conjunction with an extrapolation argument will play
a key role in obtaining all our results and will allow us to obtain tieboundedness of

557 under optimal size conditions @
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(3) We point out that it is still an open question whether tidboundedness cﬂ’g’*) holds
for 2 < v < oo. In the casey = oo, the authors ofl[14] pointed out that the maximal
operatorséw’*)(f) is not bounded on all” spaces fol < p < co. On the other hand,
we notice that Theore@.S gives th’atg’*) is bounded orl’? for any1 < v < oc.

(4) Theorenj 1.J7 (a)(c) and Theorém|1.8 (c) represent an improvement over the main results
in [8] and improves the range pfin [2]. Also, Theorenf 1]7 (b)(d) and Theor¢m]1.8 (d)
represent an improvement over the main resultslin [9] and [1].

Throughout the rest of the paper the lettéewill stand for a constant but not necessarily the
same one in each occurrence.

2. DEFINITIONS AND SOME BASIC LEMMAS

Block spaces originated from the work of M.H. Taibleson and G. Weiss on the convergence
of the Fourier series in connection with developments of the real Hardy spaces. Below we
shall recall the definition of block spaces 8. For further background information about
the theory of spaces generated by blocks and its applications to harmonic analysis, one can

consult the book [20]. I [20], Lu introduced the spadiég’“)(snfl) with respect to the study
of singular integral operators.

Definition 2.1. A ¢g-block onS"~!is an L7 (1 < ¢ < oo) functiond(z) that satisfies

(i) suppb) € I;
(20) 6]l 10 < 11|77 where|-| denotes the product measure 81!, and I is an interval
onS" e, I ={zxe€S" |z — x| < a}forsomen > 0andz, € S"'.
The block spac&””) = B"”)(S"~1) is defined by

B = {Q € LN 1= A, MP (1)) < oo} ,
pn=1
where each\, is a complex number; eadh) is a g-block supported on an intervd],
onS™ ! v > —1and

o0

MO (10,1 = DI {1+ 1080 (1,17}

pn=1
Let
HQHBSIO’“)(S"*) - Néo’v)(ﬁ) = inf {Méo’v) ({)\u})} )
where the infimum is taken over glblock decompositions db.

Definition 2.2. For arbitrary 6 > 2 andQ : S"~! — R, we define the sequence of measures
{oank : k € Z} and the corresponding maximal operatgy , , on R”™ by

Q'
(2.1) fdoanek :/ h(|u|) ( n)f(u> du;
R 0k <|u|<Ok+1 |ul
(2.2) oone(f) =sup|loanek| * fl.
kez

We shall need the following lemma which has its roots in [15] and [5]. A proof of this lemma
can be obtained by the same proof (with only minor modifications) as that of Lemma 3.2 in [5].
We omit the details.
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Lemma 2.1. Let{oy} : k € Z} be a sequence of Borel measuresRih Suppose that for some
a>2 o C >0, B>1andp, € (2,00) the following hold fork € Z, ¢ € R™ and for
arbitrary functions{ g, } onR™:

() [64 (€)] < CBat¢[*5

0 (z o *gk\2)2
keZ -

Then forp, < p < po, there exists a positive constafij independent oB such that

Zak*f

keZ

< 0B Z gk [?

keZ H

< GBIfl,

p

holds for all f in L? (R").

Lemma 2.2.Letd andoy, , , be given asin Deflnltlo- n 2.2. Suppose LY(R,,dt/t) for some
1 < v < ocoandQ € L}(S"1). Then

(2.3) ”UQ,h,G Hp < C'p(log 9>1/7/ HhHL’Y(R_;,_,dt/t) HQ”Ll(sn—l) Hpr
fory' <p <ooandf € LP(R"), whereC, is independent a2, § and f.

Proof. By Holder’s inequality we have

1
loann* F@)] < IRl g |20 g0

</9 /sn el (@ — ty)|" do(y )Cit> /v"

By Minkowski’s inequality for integrals we get

s (D] < 10g )Y 11l e ey 11
Q "
([ 1o

R
M, () = sup R~ / (@ — sy)|ds

9k+1

dU(y)) " :

/Y

where

R>0
is the Hardy-Littlewood maximal function gfin the direction ofy. By the fact that the operator
M, is bounded orL?(R") for 1 < p < oo with a bound independent gf by the last inequality
we get[(2.8). Lemma 2.2 is thus proved. O

By following an argument similar to that in [17] and [2], we obtain the following:

Lemma 2.3. Letd and(2 be as in Lemmpa 2.2. Assume that L (R, dt/t) for somey > 2.
Then fory’ < p < oo, there exists a positive constafif which is independent é¢fsuch that

1
< Cp(loge)l/vl HQ”Ll(s'H) (Z |gk‘2>

keZ

1

2

Z o n6.k * gk|2>

keZ
p
holds for arbitrary measurable functiodg; } onR".

Now, we need the following simple lemma.
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Lemma 2.4. Letq > 1 and8 = max{2,¢'}. Suppose thaf € L(S"!). Then for some
positive constant’, we have

GGG

2
(2.4)

<1 [ IR O dofe

and

(25) / RO | (o — 1) do(€) < C QU0 (Magn (19177) (@)

for all positive real numberg and z € R™ and arbitrary functionsf, where Mg,,, is the
spherical maximal operator defined by

Mgpn f(x) = sup /Sn—1 |f(z — tu)| do(u).

t>0

Proof. Let us first prove[(2]4). First if > 2, by Holder’s inequality we have

o ([ e )"

<ol [ 1f@)Pdote)

Q) f(§)do(€)

Sn—1

which is the inequality{ (2]4) in the cage> 2. Next, if 1 < ¢ < 2, the inequality[(2.}4) follows
by Schwarz’s inequality.
To prove [2.5) we need again to consider two cases. Figstif 2, we notice that@]S) is

obvious. Nextifl < ¢ < 2, ) follows by Holder's inequality on noticing théﬁ) =q'/2.
The lemma is thus proved.

3. PROOF OF THE M AIN RESULTS

We begin with the proof of Theorem 1.4.
Proof. SinceL?(S™1) C L*(S"!) for ¢ > 2, Theoren] 1.}4 is proved once we prove that

3.1) |86 gy < Gola= D77 12 gy 1 e

holds forl < ¢ <2, (n¢'y')/(Yn+n¢ —+') <p < oo andl <~ < 2.
We shall prove[(3]1) by first proving (3.1) for the cases 1 andy = 2 and then we use the
idea of interpolation to cover the case< v < 2.

Proof of [3.]) for the case = 1. By duality we have

flz —tu)Q(u)do(u)

Sn—1

flz —tu)Q(u)do(u)

Sn—1

S0 () = \

‘ Lo° (R dt)

<sup [ 1o =)l 000)] do(u).

t>0

Lo (Ry,dt/t)

Using Holder’s inequality we get

S5 sy < 12, (M (1917) @)
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By the results of E.M. Stein [23] and J. Bourgain![12] we know that,,(f) is bounded on
LP(R™) forn > 2 andp > n/(n — 1). Thus by using the last inequality we gt (3.1) for the
casey = 1.

Proof of [3.1) for the case = 2. By Holder’s inequality we obtain

o0 2 o\ 2
s f ‘)

Let & = 27 and let{yp;}>_ be a smooth partition of unity if0, co) adapted to the interval
[0=+=1 0~**1]. Specifically, we require the following:

P €C™, 0<@ <1, Y on(t) =

/ Q(u) f(x — tu)do(u)
gn—1

keZ
suppyy, C [0751, 67+, ‘—d Zlgs(t)' < %,

9k+1

Z/SM W) T i — tu)dor(u)

JEZ

where
6k+1

whereC;, is independent of the lacunary sequefiée: k € Z}. Define the multiplier operators
Ty, in R™ by (Tpf)(€) = ¢i(|€])f(€). Then for anyf € S(R") andk € Z we havef(z) =
> jez(Ti+; f)(x). Thus, by Minkowski's inequality we have
2 3
2 (2,%) o
kEZ
< Z X;f(x)
JEZ
2 .\ 2
dt
(Z / / (W) Ty (& — tu)do(u) —)
9 Sn— 1 t
keZ
We notice that to prove (3.1) for the cage= 2, it is enough to prove that the inequality
(3.2) 1X()ll, < Colg = 1)72 2], 2775 | £]],
holds forl < ¢ <2, (n¢'Y')/(ny +nq¢ —v') < p < oo and for some positive constarits and
4, This inequality can be proved by interpolation between a shamstimate and a crudér
estimate. We prove (3.2) first for the case- 2. By using Plancherel’s theorem we have
33) = [ X @ |fo] T
Akt kez

whereA, = {£ e R*: 07" < |¢| <677} and
2 .\ 2
dt
3.4) Hi(€) = ( / 7)
ok
We claim that
(35) [Hi(€)] < C(log 6)% 12|, min { 6|7, |o*+1¢|7 |

9k+1

/S Q)" do(x)

where(C' is a constant independent bf¢ andg.

J. Inequal. Pure and Appl. Mathl0(3) (2009), Art. 78, 15 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ROUGH INTEGRAL OPERATORS ANDEXTRAPOLATION 9

Let us now turn to the proof of (3.5). First, by a change of variable and since

2
/ Qz)e "% do (z) :/ Q(2)Q(y)e " D do(2)do (y),
sn-1 §n-lxgn-1

we obtain

(36)  (H(§)" < /S s @90 ( / ee‘”’”w-w%) do(z)do(y).

Using an integration by parts,

0
/ —iOFte-(z—y Ci ‘ < C(log®) ‘Hkﬂ x—y)|71-
1

By combining this estimate with the trivial estim#tﬁe e~ M@0 At < (log 0), we get

0
d _
/ e ety / ‘ < Clog) [0°¢| " [¢' - (z —y)| ™" forany0 <a < 1.
1

Thus, by the last inequality, (3.6) and Holder’s inequality we get

1

do(z)do(y) )

it [€ (2 — )|

By choosingx so thatng’ < 1 we obtain that the last integral is bounded’ire S*~! and hence

|Hi(6)] < Clog§)? 19, ‘91@5‘—2%, (/S

(3.7) [Hi(§)] < C(log )2 ], [0%] 7>
Secondly, by the cancellation conditions @mwe obtain

ok+1 2dt %
Hi(€) < ( / ( / Q)] fe " — 1Ido<w>) 7)
ok Sn—1
< C(log6): ], [6+'¢|.
By combining the last estimate with the estimgitg (¢)| < C(log6)/? ||Q2]|, , we get
(3.8) |H(€)] < C(log )2 |, |6 ¢[> .

By combining the estimatefs (3.7)—(3.8), we obtain|(3.5).
Now, by (3.4) and[(3]5) we obtain

(3.9) 1X;5(f)

I

< C27 V(g =)= (|9l [ fl,-

Let us now estimate X;(f)|[, for (ngy)/(v'n +n¢" —+') < p < cowith p # 2. Let us

first consider the case > 2. By duality, there is a nonnegative functignn L(p/Z)’(Rn) with
gl /2 < 1 such that

Ixoe= [ 3

keZ

gr 2 dt
| 0Tt = tudotn)| Fote)ds
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By Hoélder’s inequality, Fubini’s theorem and a change of variable we have

9k+1

d
xRt [ S [0 [ @i - P s
keZ
9k+1 d
<t [ 52 [ 00T @ ota-+ )i G
<clel, | (Z |Tk+jf(rv)\2> 7i00() (),
keZ

whereg(z) = g(—=) andoy, , 4 is defined as inf (2]2). By the last inequality, Lemmg 2.2 and
using Littlewood-Paley theory ([24, p. 96]) we get

Z ik

keZ

1% (A2 < €121, |of.0@] , 0

(p/2)
< Cy(log§) Q17 1 /1,

which in turn easily implies

(3.10) 1A, < Colg =172, I1£1l,  for2 <p < oo,

By interpolating betweerj (3.9) £ (3]10) we get {3.2) for the case p < oo. Now, let us
estimate|| X;(f)||, for the caséng'y’)/(v'n +n¢’ — ') < p < 2. By a change of variable we

get
- (5] )
t
keZ
By duality, there is a functioh = hy, ;(x, t) satisfying||h|| < 1 and

hij(x,t) € LF (F [LQ ([1 g, dt) k} ,dm)
such that

DIGIEY DY / / 0) (T ) (2 — 04t o, ()

keZ

| 0Tt~ o

/ / / w) (T i f) (2)hyj(z 4 0Ftu, t)da(u)%dx.
n Sn— 1

keZ

By Hoélder’s inequality and Littlewood-Paley theory we get

3
| (Z|Tk+jf!2>
p keZ
V4

|||

(/ /sn ) w)hgj(x + 0%tu, t)do(u )oit) |
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Sincep’ > 2 andH L(h))l/zH = |L(R)||M/2 , there is a nonnegative functire L®'/2' (R™)
p/

p/2°
such that|b||,, ,, < 1 and

1L, = /Z(/ /S ()i s (& + 6%t t)dor (u )Cff) b(z)da.

keZ

By the Schwarz inequality and Lemrnaj2.4, we obtain

(/ /s,n . w)hyj(z + 0%tu, t)do (u )cit>

2
dt
< C'(log ) / ( / Q(u)hk,j(xwktu,t)da(u)) @
1 Sn—1
< Qoo 190 [ [ 100 g o ) a0
Sn— 1

Therefore, by the last inequality, a change of variable, Fubini’s theorem, Hélder’s inequality,
and Lemma 2]4 we get

min{2 max{0,2
1L 2 < C (l0g 0) [ Q1atee ) 1201 a5

< /R (Z/Ielh;w-(m,t) 2%) (Msph (‘b

keZ
Z/ | j(, ) 2dt

C (10g 0) 12/ o g1y
keZ

~ q’/2 2/f1/
(s (F7)) 1,
('/2)

By the condition orp we have(2/¢’)(p'/2)’ > n/(n — 1) and hence by thé? boundedness of
M, and the choice of we obtain

L) s < Cla = 1) Qo gsnry -
Using the last inequality anfl (3]11) we have
(312) [IX(Hl, < Cola =D NQ, NIfl,  for (ng'y)/(¥n+ng =) <p <2

Thus, by|[(3.9) and (3.12) and interpolation we §et|(3.2)far+')/(v'n + ng — ') < p < 2.
This ends the proof of (3/1) for the cage= 2.

Proof of [3.1) for the casé < v < 2.
We will use an idea that appeared(in[[19]. By duality we have

|s52)

2

" 2) (—x)) dz

Q

p'/2

= HF(f)HLP(Lw’(R+,%),R",dx) )

Lp(R™)
whereF : LP(R") — LP(L" (R4, %), R") is a linear operator defined by

(At = | fa—tu)Qu)do(u).

Sn—1

From the inequalities (31) (for the cage= 2) and 3.1) (for the case = 1), we interpret that

_1
HF(f)HLp(L2(R+,%),Rn) <C(g—1)>2 HQHLG(S"—l) HfHLP(R")
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for (2nq')/(2n +nqg' — 2) < p < oo and
(3.13) IE O o zoe ey ey mmy < C L Laggn—1) 11l oy

for ¢'n’ < p < co. Applying the real interpolation theorem for Lebesgue mixed normed spaces
to the above results (s€e [11]), we conclude that

1E ) oz ey gy < Cola = 1) 19 pagsnny £ 1| oy

holds forl < ¢ < 2, (n¢'y')/(ny +ng¢ —+') < p < oo andl < v < 2. This completes the
proof of Theoren 1}4. O

Next we shall present the proof of Theorpm] 1.5.
Proof. We need to consider two cases.

Case 1.1 < v < 2. By an argument appearing in! [6], we may, without loss of generality,
in the definition of M, ;,, replacely| < t with 1t < |y| < t. By Minkowski's inequality and
Fubini’'s theorem we get

;
([
[
_ / -

1 o ds
- = [T st = swowmastn | sl <

Therefore, by duality we have

NI

2
dt

t1+20'

[ ste= 02Dy
$t<|y|<t Y|

Fa = s)a)da()| 16) g, 905 ) ti)

1
2 2
2 dt dS
P, 95 )
1

Sn—1

f(x = sy)Q(y)do(y)

Sn—1

fte = stant| o) (%) S

Sn—1

1

\/%Ss(?’*)f(m),

(3.14) MG f(z) <

and hence (1}7) holds by (1.6) for< v < 2.
Case 22 < v < o0. By a change of variable and duality we have

0 1 ~! 2/ 2
Mir@ < | [ LA
0 1/2 S t

Using the generalized Minkowski inequality and sin¢e< 2, we get

-

flz — stu)Q (u) do(u)
gn—1

1 A
3.15) Mg < ([ s )

where )
%) 2 d 2
E,f(z) = < / f) -
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SinceE, f(z) = S&) f(x), we obtain

(3.16) MG (@) < S50 f(w),

and again[(1]7) holds for the ca®e< v < oo by (1.6) in the case = 2. O
We now give the proof of Theorejmn ].6.

Proof. For part (a), we need to consider two cases.
Casell <~y <2

By definition of S f (x) we haveSg,uf(x) = lim S§)f(x) for f € S(R™), wheresS§), is
the truncated singular integral operator given by

R Qu
s = [ s -
|u|>e |U|
By Hdlder’s inequality and duality we have
[s§ura| < [ men|[
<Al angey Sa ™ ().
Thus, by Theorern 1.4 we get
(3.17) Hséls,)h(f>Hp < Cp (=17 Il oy gy 190 oy 11,

for (ng'y')/(ny +n¢ — ') < p < coandl < v < 2 and for some positive constaat,
independent of. In particular, [(3.1]7) holds fo2 < p < oo and1l < v < 2. By duality (3.17)
also holds forl < p < 2 andl < v < 2. Using Fatou’s lemma andl (3]17) we gkt (1.8) for
l<p<ooandl <~vy<2.

flz —tu)Q (u) do(u) %

Case 2.2 < v < oco. Write SS(;)h(f) = 1ez Oanox * . By Holder's inequality we have

1

AN
t
< (log 9)2;”/ HhHLv(R+,dt/t) Hi(§),
whereH, () is defined as i (3]5). Thus, by the last inequality (3.5) we obtain

)

By Lemmd 2.B,(3.118) and invoking Lemma .1 with= 29, a;, = 6* we obtain [(1.B) for
2 < v < ocoandy < p < oo with C, independent of. Sincey’ < 2, we get [1.8) for
2 <p < ooand2 < v < oo. By duality and Fatou’s lemma we obtajn ([1.8) fox p < co and
2 < v < oo. This completes the proof df (1.8).

The proof of [1.p) follows immediately from Theor¢m[L.5 and

Manf(z) < MS’*)f(x)

0k+1

k

/S Q(z)e % do(z)

1G0.n0( ] < NPl v m, atye) (/9

: : 2
(3.18) Fanan(©)] < Cllog0) @], min { 6% 77 [0"+1¢

foranyh € L7(Ry,dt/t),1 <y < 0. O
Proofs of Theorenis 1.7 and ]L.8.proof of each of these theorems follows by Theorém§ 1.4 —
[1.6 and an extrapolation argument. For more details/see [6], [21]. O
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