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ABSTRACT. In this paper, we obtain sharpLp estimates of two classes of maximal operators
related to rough singular integrals and Marcinkiewicz integrals. These estimates will be used to
obtain similar estimates for the related singular integrals and Marcinkiewicz integrals. By the
virtue of these estimates and extrapolation we obtain theLp boundedness of all the aforemen-
tioned operators under rather weak size conditions. Our results represent significant improve-
ments as well as natural extensions of what was known previously.
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1. I NTRODUCTION AND M AIN RESULTS

Throughout this paper, letRn, n ≥ 2, be then-dimensional Euclidean space andSn−1 be the
unit sphere inRn equipped with the normalized Lebesgue surface measuredσ. Also, we letξ′

denoteξ/ |ξ| for ξ ∈ Rn\{0} andp′ denote the exponent conjugate top, that is1/p + 1/p′ = 1.
Let KΩ,h(x) = Ω(x′)h(|x|) |x|−n , whereh : [0, ∞) −→ C is a measurable function andΩ

is a function defined onSn−1 with Ω ∈ L1(Sn−1) and

(1.1)
∫

Sn−1

Ω (x) dσ (x) = 0.
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For 1 ≤ γ ≤ ∞, let ∆γ (R+) denote the collection of all measurable functionsh : [0, ∞) −→

C satisfying sup
R>0

(
1
R

∫ R

0
|h(t)|γdt

)1/γ

< ∞.

Define the singular integral operatorSΩ,h, the parametric Marcinkiewicz integral operator
MΩ,h and their related maximal operatorsS

(γ,∗)
Ω andM(γ,∗)

Ω by

(1.2) SΩ,hf(x) = p.v.
∫

Rn

f(x− u)KΩ,h(u)du,

(1.3) MΩ,hf(x) =

(∫ ∞

0

∣∣∣∣t−ρ

∫
|u|≤t

f(x− u) |u|ρ KΩ,h(u)du

∣∣∣∣2 dt

t

) 1
2

,

(1.4) S
(γ,∗)
Ω f(x) = sup

h
|SΩ,hf(x)| ,

(1.5) M(γ,∗)
Ω f(x) = sup

h
|MΩ,hf(x)| ,

wheref ∈ S(Rn), ρ = σ + iτ (σ, τ ∈ R with σ > 0) and the supremum is taken over the set
of all radial functionsh with h ∈ Lγ(R+, dt/t) and‖h‖Lγ(R+,dt/t) ≤ 1.

If h(t) ≡ 1 andρ = 1, we shall denoteSΩ,h by SΩ andMΩ,h byMΩ, which are respectively
the classical singular integral operator of Calderón-Zygmund and the classical Marcinkiewicz
integral operator of higher dimension.

The study of the mapping properties ofSΩ,MΩ and their extensions has a long history.
Readers are referred to [7], [3], [4], [16], [18], [5], [10], [22], [24], [25] and the references
therein for applications and recent advances on the study of such operators.

Let us now recall some results which will be relevant to our current study. We start with the
following results on singular integrals:

Theorem 1.1. If Ω satisfies one of the following conditions, thenSΩ,h is bounded onLp(Rn)
for 1 < p < ∞.

(a) Ω ∈ L(log L)(Sn−1) and h ∈ ∆γ (R+) for someγ > 1. Moreover, the condition
Ω ∈ L(log L)(Sn−1) is an optimal size condition for theLp boundedness ofSΩ (see
[13] in the caseh(t) ≡ 1 and see[10]).

(b) Ω ∈ L(log L)1/γ′(Sn−1) andh ∈ Lγ(R+, dt/t) for someγ > 1 (see[2] and see[8] in
the caseγ = 2).

(c) Ω ∈ B
(0,0)
q (Sn−1) for someq > 1 and h ∈ ∆γ (R+) for someγ > 1. Moreover, the

conditionΩ ∈ B
(0,0)
q (Sn−1) is an optimal size condition for theLp boundedness ofSΩ

(see[4] and [5]).
(d) Ω ∈ B

(0,−1/2)
q (Sn−1) for someq > 1 andh ∈ L2(R+, dt/t) ([9]).

HereL(log L)
α
(Sn−1) (for α > 0) is the class of all measurable functionsΩ onSn−1 which

satisfy

‖Ω‖L(log L)α (Sn−1) =

∫
Sn−1

|Ω(y)| log
α

(2 + |Ω(y)|)dσ(y) < ∞

andB
(0,υ)
q (Sn−1), υ > −1, is a special class of block spaces whose definition will be recalled

in Section 2.
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Theorem 1.2. If Ω satisfies one of the following conditions, thenMΩ,h is bounded onLp(Rn)
for 1 < p < ∞.

(a) Ω ∈ L(log L)1/2 (Sn−1) and h = 1. Moreover, the exponent1/2 is the best possible
([26], [7]).

(b) Ω ∈ B
(0,−1/2)
q (Sn−1) for someq > 1 and h = 1. Moreover, the conditionΩ ∈

B
(0,−1/2)
q (Sn−1) is an optimal size condition for theL2 boundedness ofMΩ ([3]).

(c) Ω ∈ L(log L)1/γ′(Sn−1), h ∈ Lγ(R+, dt/t), 1 < γ ≤ 2 and γ′ ≤ p < ∞ or Ω ∈
L(log L)1/2(Sn−1, h ∈ Lγ(R+, dt/t), 2 < γ < ∞ and2 ≤ p < ∞ ([6]).

On the other hand, the study of the related maximal operatorS
(γ,∗)
Ω has attracted the attention

of many authors. See for example, [14], [1], [5], [6], [8], [9], [27].

Theorem 1.3. If Ω satisfies one of the following conditions, thenS
(γ,∗)
Ω is bounded onLp(Rn).

(a) Ω ∈ C(Sn−1), (nγ)/(nγ − 1) < p < ∞ and1 ≤ γ ≤ 2. Moreover, the range ofp is
the best possible[14].

(b) Ω ∈ B
(0,−1/2)
q (Sn−1) for someq > 1, γ = 2, 2 ≤ p < ∞. Moreover, the condition

Ω ∈ B
(0,−1/2)
q (Sn−1) is an optimal size condition for theL2 boundedness ofS(2,∗)

Ω to
hold ([1], [9]).

(c) Ω ∈ L(log L)
1/γ′

(Sn−1), γ′ ≤ p < ∞. Moreover, the exponent1/2 is the best possible
for theL2 boundedness ofS(2,∗)

Ω to hold (see[8] for γ = 2 and[2] for γ 6= 2).

In view of the above results, the following question is very natural:

Problem 1.1. Is there any analogue of Theorem 1.1(d) and Theorem 1.3(b) in the caseγ 6= 2?
Is there an analogy of Theorem 1.2(c)? Is there any room for improvement of the range ofp in
both Theorem 1.2(c) and Theorem 1.3(c)?

The purpose of this paper is two-fold. First, we answer the above questions in the affirmative.
Second, we present a unified approach different from the ones employed in previous papers (see
for example, [1], [2], [6], [8], [9]) in dealing with the operatorsSΩ,h, MΩ,h, S

(γ,∗)
Ω andM(γ,∗)

Ω

when the kernel functionΩ belongs to the block spaceB(0,υ)
q (Sn−1) (for υ > −1) or Ω belongs

to the classL(log L)
α
(Sn−1) (for α > 0). This approach will mainly rely on obtaining some

delicate sharpLp estimates and then applying an extrapolation argument.
Now, let us state our main results.

Theorem 1.4.Suppose thatΩ∈ Lq(Sn−1) for some1 < q ≤ ∞. Then

(1.6)
∥∥∥S(γ,∗)

Ω (f)
∥∥∥

Lp(Rn)
≤ Cp

(
q

q − 1

)1/γ′

‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

holds for(nαγ′)/(γ′n+nα−γ′) < p < ∞ and1 ≤ γ ≤ 2, whereα = max{2, q′}. Moreover,
the exponent1/γ′ is the best possible in the caseγ = 2.

Theorem 1.5. Letα andΩ be as in Theorem 1.4 and let1 ≤ γ < ∞. Then

(1.7)
∥∥∥M(γ,∗)

Ω (f)
∥∥∥

Lp(Rn)
≤ Cp

(
q

q − 1

)1/β

‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

holds for(nαβ)/(βn + nα − β) < p < ∞, whereβ = max{2, γ′}. Moreover, the exponent
1/β is the best possible in the caseγ = 2.
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Theorem 1.6. Suppose thatΩ∈ Lq(Sn−1), 1 < q ≤ 2, andh ∈ Lγ(R+, dt/t) for some1 <
γ ≤ ∞. Then

(1.8) ‖SΩ,h(f)‖Lp(Rn) ≤ Cp (q − 1)−1/γ′ ‖h‖Lγ(R+,dt/t) ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

for 1 < p < ∞ and

(1.9) ‖MΩ,h(f)‖Lp(Rn) ≤ Cp (q − 1)−1/β ‖h‖Lγ(R+,dt/t) ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

for (nβq′)/(βn + nq′ − β) < p < ∞.

By the conclusions from Theorems 1.4 – 1.6 and applying an extrapolation method, we get
the following results:

Theorem 1.7.

(a) If Ω ∈ L(log L)
1/γ′

(Sn−1) and1 < γ ≤ 2, the operatorS(γ,∗)
Ω is bounded onLp(Rn)

for 2 ≤ p < ∞;

(b) If Ω ∈ B
(0,1/γ′−1)
q (Sn−1) and1 < γ ≤ 2, the operatorS(γ,∗)

Ω is bounded onLp(Rn) for
2 ≤ p < ∞;

(c) If Ω ∈ L(log L)
1/γ′

(Sn−1) andh ∈ Lγ(R+, dt/t) for some1 < γ ≤ ∞, the operator
SΩ,h is bounded onLp(Rn) for 1 < p < ∞;

(d) If B
(0,1/γ′−1)
q (Sn−1) for someq > 1 andh ∈ Lγ(R+, dt/t) for some1 < γ ≤ ∞, the

operatorSΩ,h is bounded onLp(Rn) for 1 < p < ∞.

Theorem 1.8.Let1 < γ < ∞ andβ = max{2, γ′}.
(a) If Ω ∈ L(log L)

1/β
(Sn−1) and1 < γ < ∞, the operatorM(γ,∗)

Ω is bounded onLp(Rn)
for 2 ≤ p < ∞;

(b) If Ω ∈ B
(0,1/β−1)
q (Sn−1) and1 < γ < ∞, the operatorM(γ,∗)

Ω is bounded onLp(Rn)
for 2 ≤ p < ∞.

(c) If Ω ∈ L(log L)
1/β

(Sn−1) andh ∈ Lγ(R+, dt/t) for some1 < γ < ∞, the operator
MΩ,h is bounded onLp(Rn) for 2 ≤ p < ∞;

(d) If B
(0,1/β−1)
q (Sn−1) for someq > 1 andh ∈ Lγ(R+, dt/t) for some1 < γ < ∞, the

operatorMΩ,h is bounded onLp(Rn) for 2 ≤ p < ∞.

Remark 1.
(1) For anyq > 1, 0 < α < β and−1 < υ, the following inclusions hold and are proper:

Lq(Sn−1) ⊂ L(log L)
β

(Sn−1) ⊂ L(log L)
α

(Sn−1),⋃
r>1

Lr(Sn−1) ⊂ B(0,υ)
q (Sn−1) for any − 1 < υ,

B(0,υ2)
q (Sn−1) ⊂ B(0,υ1)

q (Sn−1) for any − 1 < υ1 < υ2,

Lγ(R+, dt/t) ⊂ ∆γ (R+) for 1 ≤ γ < ∞.

The question regarding the relationship betweenB
(0,υ−1)
q andL(log L)

υ
overSn−1 (for

υ > 0) remains open.
(2) TheLp boundedness ofS(γ,∗)

Ω for (nαγ′)/(γ′n + nα− γ′) < p < ∞ andΩ∈ Lq(Sn−1)
was proved in [1] only in the caseγ = 2, but the importance of Theorem 1.4 lies in
the fact that the estimate (1.6) in conjunction with an extrapolation argument will play
a key role in obtaining all our results and will allow us to obtain theLp boundedness of
S

(γ,∗)
Ω under optimal size conditions onΩ.
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(3) We point out that it is still an open question whether theLp boundedness ofS(γ,∗)
Ω holds

for 2 < γ < ∞. In the caseγ = ∞, the authors of [14] pointed out that the maximal
operatorS(∞,∗)

Ω (f) is not bounded on allLp spaces for1 ≤ p ≤ ∞. On the other hand,
we notice that Theorem 1.5 gives thatM(γ,∗)

Ω is bounded onLp for any1 ≤ γ < ∞.
(4) Theorem 1.7 (a)(c) and Theorem 1.8 (c) represent an improvement over the main results

in [8] and improves the range ofp in [2]. Also, Theorem 1.7 (b)(d) and Theorem 1.8 (d)
represent an improvement over the main results in [9] and [1].

Throughout the rest of the paper the letterC will stand for a constant but not necessarily the
same one in each occurrence.

2. DEFINITIONS AND SOME BASIC L EMMAS

Block spaces originated from the work of M.H. Taibleson and G. Weiss on the convergence
of the Fourier series in connection with developments of the real Hardy spaces. Below we
shall recall the definition of block spaces onSn−1. For further background information about
the theory of spaces generated by blocks and its applications to harmonic analysis, one can
consult the book [20]. In [20], Lu introduced the spacesB

(0,υ)
q (Sn−1) with respect to the study

of singular integral operators.

Definition 2.1. A q-block onSn−1 is anLq (1 < q ≤ ∞) functionb(x) that satisfies

(i) supp(b) ⊂ I;

(ii) ‖b‖Lq ≤ |I|−1/q′ , where|·| denotes the product measure onSn−1, andI is an interval
onSn−1, i.e., I = {x ∈ Sn−1 : |x− x0| < α} for someα > 0 andx0 ∈ Sn−1.

The block spaceB(0,υ)
q = B

(0,υ)
q (Sn−1) is defined by

B(0,υ)
q =

{
Ω ∈ L1(Sn−1) : Ω =

∞∑
µ=1

λµbµ , M (0,υ)
q

(
{λµ}

)
< ∞

}
,

where eachλµ is a complex number; eachbµ is a q-block supported on an intervalIµ

onSn−1, υ > −1 and

M (0,υ)
q

(
{λµ}

)
=

∞∑
µ=1

∣∣λµ

∣∣ {1 + log(υ+1)
(∣∣Iµ

∣∣−1
)}

.

Let
‖Ω‖

B
(0,υ)
q (Sn−1)

= N (0,υ)
q (Ω) = inf

{
M (0,υ)

q

(
{λµ}

)}
,

where the infimum is taken over allq-block decompositions ofΩ.

Definition 2.2. For arbitrary θ ≥ 2 and Ω : Sn−1 → R, we define the sequence of measures
{σΩ,h,k : k ∈ Z} and the corresponding maximal operatorσ∗Ω,h,θ onRn by

(2.1)
∫

Rn

f dσΩ,h,θ,k =

∫
θk≤|u|<θk+1

h(|u|)Ω(u′)

|u|n
f (u) du;

(2.2) σ∗Ω,h,θ(f) = sup
k∈Z

||σΩ,h,θ,k| ∗ f | .

We shall need the following lemma which has its roots in [15] and [5]. A proof of this lemma
can be obtained by the same proof (with only minor modifications) as that of Lemma 3.2 in [5].
We omit the details.
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Lemma 2.1. Let{σk : k ∈ Z} be a sequence of Borel measures onRn. Suppose that for some
a ≥ 2, α, C > 0, B > 1 and p0 ∈ (2,∞) the following hold fork ∈ Z, ξ ∈ Rn and for
arbitrary functions{gk} onRn:

(i) |σ̂k (ξ)| ≤ CB
∣∣akξ

∣∣± α
log(a) ;

(ii)

∥∥∥∥∥
(∑

k∈Z

|σk ∗ gk|2
) 1

2

∥∥∥∥∥
p0

≤ CB

∥∥∥∥∥
(∑

k∈Z

|gk|2
) 1

2

∥∥∥∥∥
p0

.

Then forp′0 < p < p0, there exists a positive constantCp independent ofB such that∥∥∥∥∥∑
k∈Z

σk ∗ f

∥∥∥∥∥
p

≤ CpB ‖f‖p

holds for allf in Lp (Rn).

Lemma 2.2. Letθ andσ∗Ω,h,θ be given as in Definition 2.2. Supposeh ∈ Lγ(R+, dt/t) for some
1 < γ ≤ ∞ andΩ ∈ L1(Sn−1). Then

(2.3)
∥∥σ∗Ω,h,θ(f)

∥∥
p
≤ Cp(log θ)1/γ′ ‖h‖Lγ(R+,dt/t) ‖Ω‖L1(Sn−1) ‖f‖p

for γ′ < p ≤ ∞ andf ∈ Lp(Rn), whereCp is independent ofΩ, θ andf.

Proof. By Hölder’s inequality we have

|σΩ,h,θ,k ∗ f(x)| ≤ ‖h‖Lγ(R+,dt/t) ‖Ω‖
1/γ

L1(Sn−1)

×

(∫ θk+1

θk

∫
Sn−1

|Ω(y)| |f(x− ty)|γ
′
dσ(y)

dt

t

)1/γ′

.

By Minkowski’s inequality for integrals we get∥∥σ∗Ω,h,θ(f)
∥∥

p
≤ (log θ)1/γ′ ‖h‖Lγ(R+,dt/t) ‖Ω‖

1/γ

L1(Sn−1)

×
(∫

Sn−1

|Ω(y)|
∥∥∥My(|f |γ

′
)
∥∥∥

p/γ′
dσ(y)

)1/γ′

,

where

Myf(x) = sup
R>0

R−1

∫ R

0

|f(x− sy)| ds

is the Hardy-Littlewood maximal function off in the direction ofy. By the fact that the operator
My is bounded onLp(Rn) for 1 < p < ∞ with a bound independent ofy, by the last inequality
we get (2.3). Lemma 2.2 is thus proved. �

By following an argument similar to that in [17] and [2], we obtain the following:

Lemma 2.3. Let θ andΩ be as in Lemma 2.2. Assume thath ∈ Lγ(R+, dt/t) for someγ ≥ 2.
Then forγ′ < p < ∞, there exists a positive constantCp which is independent ofθ such that∥∥∥∥∥∥

(∑
k∈Z

|σΩ,h,θ,k ∗ gk|2
) 1

2

∥∥∥∥∥∥
p

≤ Cp(log θ)1/γ′ ‖Ω‖L1(Sn−1)

∥∥∥∥∥∥
(∑

k∈Z

|gk|2
) 1

2

∥∥∥∥∥∥
p

holds for arbitrary measurable functions{gk} onRn.

Now, we need the following simple lemma.
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Lemma 2.4. Let q > 1 and β = max{2, q′}. Suppose thatΩ ∈ Lq(Sn−1). Then for some
positive constantC, we have

(2.4)

∣∣∣∣∫
Sn−1

Ω(ξ)f(ξ)dσ(ξ)

∣∣∣∣2 ≤ ‖Ω‖min{2,q}
q

∫
Sn−1

|Ω(ξ)|max{0,2−q} |f(ξ)|2 dσ(ξ)

and

(2.5)
∫

Sn−1

|Ω(ξ)|max{0,2−q} |f(x− tξ)| dσ(ξ) ≤ C ‖Ω‖max{0,2−q}
q

(
MSph

(
|f |β/2

)
(x)
) 2

β

for all positive real numberst and x ∈ Rn and arbitrary functionsf, whereMSph is the
spherical maximal operator defined by

MSphf(x) = sup
t>0

∫
Sn−1

|f(x− tu)| dσ(u).

Proof. Let us first prove (2.4). First ifq ≥ 2, by Hölder’s inequality we have∣∣∣∣∫
Sn−1

Ω(ξ)f(ξ)dσ(ξ)

∣∣∣∣2 ≤ ‖Ω‖2
q

(∫
Sn−1

|f(ξ)|q
′
dσ(ξ)

) 2
q′

≤ ‖Ω‖2
q

∫
Sn−1

|f(ξ)|2 dσ(ξ),

which is the inequality (2.4) in the caseq ≥ 2. Next, if 1 < q < 2, the inequality (2.4) follows
by Schwarz’s inequality.

To prove (2.5) we need again to consider two cases. First ifq ≥ 2, we notice that (2.5) is

obvious. Next if1 < q < 2, (2.5) follows by Hölder’s inequality on noticing that
(

q
2−q

)′
= q′/2.

The lemma is thus proved. �

3. PROOF OF THE M AIN RESULTS

We begin with the proof of Theorem 1.4.

Proof. SinceLq(Sn−1) ⊆ L2(Sn−1) for q ≥ 2, Theorem 1.4 is proved once we prove that

(3.1)
∥∥∥S(γ,∗)

Ω (f)
∥∥∥

Lp(Rn)
≤ Cp(q − 1)−1/γ′ ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

holds for1 < q ≤ 2, (nq′γ′)/(γ′n + nq′ − γ′) < p < ∞ and1 ≤ γ ≤ 2.
We shall prove (3.1) by first proving (3.1) for the casesγ = 1 andγ = 2 and then we use the

idea of interpolation to cover the case1 < γ < 2.

Proof of (3.1) for the caseγ = 1. By duality we have

S
(1,∗)
Ω f(x) =

∥∥∥∥∫
Sn−1

f(x− tu)Ω(u)dσ(u)

∥∥∥∥
L∞(R+,dt/t)

=

∥∥∥∥∫
Sn−1

f(x− tu)Ω(u)dσ(u)

∥∥∥∥
L∞(R+,dt)

≤ sup
t>0

∫
Sn−1

|f(x− tu)| |Ω(u)| dσ(u).

Using Hölder’s inequality we get

S
(1,∗)
Ω f(x) ≤ ‖Ω‖q

(
MSph

(
|f |q

′
)

(x)
)1/q′

.
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By the results of E.M. Stein [23] and J. Bourgain [12] we know thatMSph(f) is bounded on
Lp(Rn) for n ≥ 2 andp > n/(n − 1). Thus by using the last inequality we get (3.1) for the
caseγ = 1.

Proof of (3.1) for the caseγ = 2. By Hölder’s inequality we obtain

S
(2,∗)
Ω f(x) ≤

(∫ ∞

0

∣∣∣∣∫
Sn−1

Ω(u)f(x− tu)dσ(u)

∣∣∣∣2 dt

t

) 1
2

.

Let θ = 2q′ and let{ϕk}∞−∞ be a smooth partition of unity in(0, ∞) adapted to the interval
[θ−k−1, θ−k+1]. Specifically, we require the following:

ϕk ∈ C∞, 0 ≤ ϕk ≤ 1,
∑
k∈Z

ϕk (t) = 1,

suppϕk ⊆ [θ−k−1, θ−k+1],

∣∣∣∣dsϕk (t)

dts

∣∣∣∣ ≤ Cs

ts
,

whereCs is independent of the lacunary sequence{θk : k ∈ Z}. Define the multiplier operators
Tk in Rn by (T̂kf)(ξ) = ϕk(|ξ|)f̂(ξ). Then for anyf ∈ S(Rn) andk ∈ Z we havef(x) =∑

j∈Z(Tk+jf)(x). Thus, by Minkowski’s inequality we have

S
(2,∗)
Ω f(x) ≤

∑
k∈Z

∫ θk+1

θk

∣∣∣∣∣∑
j∈Z

∫
Sn−1

Ω(u)Tk+jf(x− tu)dσ(u)

∣∣∣∣∣
2
dt

t

 1
2

≤
∑
j∈Z

Xjf(x),

where

Xjf(x) =

(∑
k∈Z

∫ θk+1

θk

∣∣∣∣∫
Sn−1

Ω(u)Tk+jf(x− tu)dσ(u)

∣∣∣∣2 dt

t

) 1
2

.

We notice that to prove (3.1) for the caseγ = 2, it is enough to prove that the inequality

(3.2) ‖Xj(f)‖p ≤ Cp(q − 1)−
1
2 ‖Ω‖q 2−δp|j| ‖f‖p

holds for1 < q ≤ 2, (nq′γ′)/(nγ′ +nq′−γ′) < p < ∞ and for some positive constantsCp and
δp. This inequality can be proved by interpolation between a sharpL2 estimate and a cruderLp

estimate. We prove (3.2) first for the casep = 2. By using Plancherel’s theorem we have

(3.3) ‖Xj(f)‖2
2 =

∫
∆k+l

∑
k∈Z

(Hk(ξ))
2
∣∣∣f̂(ξ)

∣∣∣2 dt

t
dξ,

where∆k =
{
ξ ∈ Rn : θ−k−1 ≤ |ξ| ≤ θ−k+1

}
and

(3.4) Hk(ξ) =

(∫ θk+1

θk

∣∣∣∣∫
Sn−1

Ω(x)e−itξ·xdσ(x)

∣∣∣∣2 dt

t

) 1
2

.

We claim that

(3.5) |Hk(ξ)| ≤ C(log θ)
1
2 ‖Ω‖q min

{∣∣θkξ
∣∣− λ

q′ ,
∣∣θk+1ξ

∣∣ λ
q′
}

,

whereC is a constant independent ofk, ξ andq.
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Let us now turn to the proof of (3.5). First, by a change of variable and since∣∣∣∣∫
Sn−1

Ω(x)e−iθktξ·xdσ(x)

∣∣∣∣2 =

∫
Sn−1×Sn−1

Ω(x)Ω(y)e−iθktξ·(x−y)dσ(x)dσ(y),

we obtain

(3.6) (Hk(ξ))
2 ≤

∫
Sn−1×Sn−1

Ω(x)Ω(y)

(∫ θ

1

e−iθktξ·(x−y)dt

t

)
dσ(x)dσ(y).

Using an integration by parts,∣∣∣∣∫ θ

1

e−iθktξ·(x−y)dt

t

∣∣∣∣ ≤ C(log θ)
∣∣θkξ

∣∣−1 |ξ′ · (x− y)|−1
.

By combining this estimate with the trivial estimate
∣∣∣∫ θ

1
e−iθktξ·(x−y) dt

t

∣∣∣ ≤ (log θ), we get∣∣∣∣∫ θ

1

e−iθktξ·(x−y)dt

t

∣∣∣∣ ≤ C(log θ)
∣∣θkξ

∣∣−α |ξ′ · (x− y)|−α for any0 < α ≤ 1.

Thus, by the last inequality, (3.6) and Hölder’s inequality we get

|Hk(ξ)| ≤ C(log θ)
1
2 ‖Ω‖q

∣∣θkξ
∣∣− α

2q′

(∫
Sn−1×Sn−1

dσ(x)dσ(y)

|ξ′ · (x− y)|αq′

) 1
2q′

.

By choosingα so thatαq′ < 1 we obtain that the last integral is bounded inξ′ ∈ Sn−1 and hence

(3.7) |Hk(ξ)| ≤ C(log θ)
1
2 ‖Ω‖q

∣∣θkξ
∣∣− α

2q′ .

Secondly, by the cancellation conditions onΩ we obtain

Hk(ξ) ≤

(∫ θk+1

θk

(∫
Sn−1

|Ω(x)|
∣∣e−itξ·x − 1

∣∣ dσ(x)

)2
dt

t

) 1
2

≤ C(log θ)
1
2 ‖Ω‖1

∣∣θk+1ξ
∣∣ .

By combining the last estimate with the estimate|Hk(ξ)| ≤ C(log θ)1/2 ‖Ω‖1 , we get

(3.8) |Hk(ξ)| ≤ C(log θ)
1
2 ‖Ω‖1

∣∣θk+1ξ
∣∣ α

2q′ .

By combining the estimates (3.7)–(3.8), we obtain (3.5).
Now, by (3.4) and (3.5) we obtain

(3.9) ‖Xj(f)‖2 ≤ C2−λ|j|(q − 1)−
1
2 ‖Ω‖q ‖f‖2 .

Let us now estimate‖Xj(f)‖p for (nq′γ′)/(γ′n + nq′ − γ′) < p < ∞ with p 6= 2. Let us

first consider the casep > 2. By duality, there is a nonnegative functiong in L(p/2)′(Rn) with
‖g‖(p/2)′ ≤ 1 such that

‖Xj(f)‖2
p =

∫
Rn

∑
k∈Z

∫ θk+1

θk

∣∣∣∣∫
Sn−1

Ω(u)Tk+jf(x− tu)dσ(u)

∣∣∣∣2 dt

t
g(x)dx.
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By Hölder’s inequality, Fubini’s theorem and a change of variable we have

‖Xj(f)‖2
p ≤ ‖Ω‖1

∫
Rn

∑
k∈Z

∫ θk+1

θk

∫
Sn−1

|Ω(u)| |Tk+jf(x− tu)|2 g(x)dσ(u)
dt

t
dx

≤ ‖Ω‖1

∫
Rn

∑
k∈Z

∫ θk+1

θk

∫
Sn−1

|Ω(u)| |Tk+jf(x)|2 g(x + tu)dσ(u)
dt

t
dx

≤ C ‖Ω‖1

∫
Rn

(∑
k∈Z

|Tk+jf(x)|2
)

σ∗Ω,1,θ(g̃)(−x)dx,

whereg̃(x) = g(−x) andσ∗Ω,h,θ is defined as in (2.2). By the last inequality, Lemma 2.2 and
using Littlewood-Paley theory ([24, p. 96]) we get

‖Xj(f)‖2
p ≤ C ‖Ω‖1

∥∥σ∗Ω,1,θ(g̃)
∥∥

(p/2)′

∥∥∥∥∥∑
k∈Z

|Tk+jf |2
∥∥∥∥∥

(p/2)

≤ Cp(log θ) ‖Ω‖2
1 ‖f‖

2
p ,

which in turn easily implies

(3.10) ‖Xj(f)‖p ≤ Cp(q − 1)−1/2 ‖Ω‖q ‖f‖p for 2 < p < ∞.

By interpolating between (3.9) – (3.10) we get (3.2) for the case2 ≤ p < ∞. Now, let us
estimate‖Xj(f)‖p for the case(nq′γ′)/(γ′n + nq′ − γ′) < p < 2. By a change of variable we
get

Xjf(x) =

(∑
k∈Z

∫ θ

1

∣∣∣∣∫
Sn−1

Ω(u)Tk+jf(x− θktu)dσ(u)

∣∣∣∣2 dt

t

) 1
2

.

By duality, there is a functionh = hk,j(x, t) satisfying‖h‖ ≤ 1 and

hk,j(x, t) ∈ Lp′
(

l2
[
L2

(
[1, θ] ,

dt

t

)
, k

]
, dx

)
such that

‖Xj(f)‖p =

∫
Rn

∑
k∈Z

∫ θ

1

∫
Sn−1

Ω(u) (Tk+jf) (x− θktu)hk,j(x, t)dσ(u)
dt

t
dx

=

∫
Rn

∑
k∈Z

∫ θ

1

∫
Sn−1

Ω(u) (Tk+jf) (x)hk,j(x + θktu, t)dσ(u)
dt

t
dx.

By Hölder’s inequality and Littlewood-Paley theory we get

‖Xj(f)‖p ≤
∥∥∥(L(h))

1
2

∥∥∥
p′

∥∥∥∥∥∥
(∑

k∈Z

|Tk+jf |2
) 1

2

∥∥∥∥∥∥
p

(3.11)

≤ Cp ‖f‖p

∥∥∥(L(h))
1
2

∥∥∥
p′

,

where

L(h) =
∑
k∈Z

(∫ θ

1

∫
Sn−1

Ω(u)hk,j(x + θktu, t)dσ(u)
dt

t

)2

.
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Sincep′ > 2 and
∥∥∥(L(h))1/2

∥∥∥
p′

= ‖L(h)‖1/2
p′/2 , there is a nonnegative functionb ∈ L(p′/2)′(Rn)

such that‖b‖(p′/2)′ ≤ 1 and

‖L(h)‖p′/2 =

∫
Rn

∑
k∈Z

(∫ θ

1

∫
Sn−1

Ω(u)hk,j(x + θktu, t)dσ(u)
dt

t

)2

b(x)dx.

By the Schwarz inequality and Lemma 2.4, we obtain(∫ θ

1

∫
Sn−1

Ω(u)hk,j(x + θktu, t)dσ(u)
dt

t

)2

≤ C (log θ)

∫ θ

1

(∫
Sn−1

Ω(u)hk,j(x + θktu, t)dσ(u)

)2
dt

t

≤ C (log θ) ‖Ω‖min{2,q}
Lq(Sn−1)

∫ θ

1

∫
Sn−1

|Ω(u)|max{0,2−q} ∣∣hk,j(x + θktu, t)
∣∣2 dσ(u)

dt

t
.

Therefore, by the last inequality, a change of variable, Fubini’s theorem, Hölder’s inequality,
and Lemma 2.4 we get

‖L(h)‖p′/2 ≤ C (log θ) ‖Ω‖min{2,q}
Lq(Sn−1) ‖Ω‖

max{0,2−q}
Lq(Sn−1)

×
∫

Rn

(∑
k∈Z

∫ θ

1

|hk,j(x, t)|2 dt

t

)(
MSph

(∣∣∣b̃∣∣∣q′/2
)

(−x)

) 2
q′

dx

≤ C (log θ) ‖Ω‖2
Lq(Sn−1)

∥∥∥∥∥∑
k∈Z

∫ θ

1

|hk,j(x, t)|2 dt

t

∥∥∥∥∥
p′/2

×

∥∥∥∥∥
(
MSph

(∣∣∣b̃∣∣∣q′/2
))2/q′

∥∥∥∥∥
(p′/2)′

.

By the condition onp we have(2/q′)(p′/2)′ > n/(n− 1) and hence by theLp boundedness of
MSph and the choice ofb we obtain

‖L(h)‖p′/2 ≤ C(q − 1)−1 ‖Ω‖2
Lq(Sn−1) .

Using the last inequality and (3.11) we have

(3.12) ‖Xj(f)‖p ≤ Cp(q − 1)−1/2 ‖Ω‖q ‖f‖p for (nq′γ′)/(γ′n + nq′ − γ′) < p < 2.

Thus, by (3.9) and (3.12) and interpolation we get (3.2) for(nq′γ′)/(γ′n + nq′ − γ′) < p < 2.
This ends the proof of (3.1) for the caseγ = 2.

Proof of (3.1) for the case1 < γ < 2.
We will use an idea that appeared in [19]. By duality we have∥∥∥S(γ,∗)

Ω (f)
∥∥∥

Lp(Rn)
= ‖F (f)‖Lp(Lγ′ (R+, dt

t
),Rn,dx) ,

whereF : Lp(Rn) → Lp(Lγ′(R+, dt
t
),Rn) is a linear operator defined by

F (f)(x; t) =

∫
Sn−1

f(x− tu)Ω(u)dσ(u).

From the inequalities (3.1) (for the caseγ = 2) and (3.1) (for the caseγ = 1), we interpret that

‖F (f)‖Lp(L2(R+, dt
t

),Rn) ≤ C(q − 1)−
1
2 ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)
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for (2nq′)/(2n + nq′ − 2) < p < ∞ and

(3.13) ‖F (f)‖Lp(L∞(R+, dt
t

),Rn) ≤ C ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

for q′n′ ≤ p < ∞. Applying the real interpolation theorem for Lebesgue mixed normed spaces
to the above results (see [11]), we conclude that

‖F (f)‖Lp(Lγ′ (R+, dt
t

),Rn) ≤ Cp(q − 1)−1/γ′ ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rn)

holds for1 < q ≤ 2, (nq′γ′)/(nγ′ + nq′ − γ′) < p < ∞ and1 ≤ γ ≤ 2. This completes the
proof of Theorem 1.4. �

Next we shall present the proof of Theorem 1.5.

Proof. We need to consider two cases.

Case 1.1 ≤ γ ≤ 2. By an argument appearing in [6], we may, without loss of generality,
in the definition ofMΩ,h, replace|y| ≤ t with 1

2
t ≤ |y| ≤ t. By Minkowski’s inequality and

Fubini’s theorem we get∫ ∞

0

∣∣∣∣∣
∫

1
2
t≤|y|≤t

f(x− y)
Ω(y′)

|y|n−ρ h(|y|)dy

∣∣∣∣∣
2

dt

t1+2σ

 1
2

≤

(∫ ∞

0

(∫ ∞

0

∣∣∣∣∫
Sn−1

f(x− sy)Ω(y)dσ(y)

∣∣∣∣ |h(s)|χ
[ 1
2 t,t]

(s)
ds

s1−σ

)2
dt

t1+2σ

) 1
2

≤
∫ ∞

0

(∫ ∞

0

∣∣∣∣∫
Sn−1

f(x− sy)Ω(y)dσ(y)

∣∣∣∣2 |h(s)|2 χ
[ 1
2 t,t]

(s)
dt

t1+2σ

) 1
2

ds

s1−σ

=

∫ ∞

0

∣∣∣∣∫
Sn−1

f(x− sy)Ω(y)dσ(y)

∣∣∣∣ |h(s)|
(∫ ∞

s

dt

t1+2σ

) 1
2 ds

s1−σ

=
1√
2σ

∫ ∞

0

∣∣∣∣∫
Sn−1

f(x− sy)Ω(y)dσ(y)

∣∣∣∣ |h(s)| ds

s
.

Therefore, by duality we have

(3.14) M(γ,∗)
Ω f(x) ≤ 1√

2σ
S

(γ,∗)
Ω f(x),

and hence (1.7) holds by (1.6) for1 ≤ γ ≤ 2.

Case 2.2 < γ ≤ ∞. By a change of variable and duality we have

M(γ,∗)
Ω f(x) ≤

∫ ∞

0

(∫ 1

1/2

∣∣∣∣∫
Sn−1

f(x− stu)Ω (u) dσ(u)

∣∣∣∣γ′ ds

s

)2/γ′

dt

t

 1
2

.

Using the generalized Minkowski inequality and sinceγ′ < 2, we get

(3.15) M(γ,∗)
Ω f(x) ≤

(∫ 1

1/2

|Esf(x)|γ
′ ds

s

)1/γ′

,

where

Esf(x) =

(∫ ∞

0

∣∣∣∣∫
Sn−1

f(x− stu)Ω (u) dσ(u)

∣∣∣∣2 dt

t

) 1
2

.
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SinceEsf(x) = S
(2,∗)
Ω f(x), we obtain

(3.16) M(γ,∗)
Ω f(x) ≤ S

(2,∗)
Ω f(x),

and again (1.7) holds for the case2 < γ ≤ ∞ by (1.6) in the caseγ = 2. �

We now give the proof of Theorem 1.6.

Proof. For part (a), we need to consider two cases.
Case 1.1 < γ ≤ 2.

By definition ofSΩ,hf(x) we haveSΩ,hf(x) = lim
ε→0

S
(ε)
Ω,hf(x) for f ∈ S(Rn), whereS

(ε)
Ω,h is

the truncated singular integral operator given by

S
(ε)
Ω,hf(x) =

∫
|u|>ε

Ω(u)

|u|n
h(|u|)f(x− u)du.

By Hölder’s inequality and duality we have∣∣∣S(ε)
Ω,hf(x)

∣∣∣ ≤ ∫ ∞

ε

|h(t)|
∣∣∣∣∫

Sn−1

f(x− tu)Ω (u) dσ(u)

∣∣∣∣ dt

t

≤ ‖h‖Lγ(R+,dt/t) S
(∗,γ)
Ω f(x).

Thus, by Theorem 1.4 we get

(3.17)
∥∥∥S(ε)

Ω,h(f)
∥∥∥

p
≤ Cp (q − 1)−1/γ′ ‖h‖Lγ(R+,dt/t) ‖Ω‖Lq(Sn−1) ‖f‖p

for (nq′γ′)/(nγ′ + nq′ − γ′) < p < ∞ and1 < γ ≤ 2 and for some positive constantCp

independent ofε. In particular, (3.17) holds for2 ≤ p < ∞ and1 < γ ≤ 2. By duality (3.17)
also holds for1 < p ≤ 2 and1 < γ ≤ 2. Using Fatou’s lemma and (3.17) we get (1.8) for
1 < p < ∞ and1 < γ ≤ 2.

Case 2.2 < γ ≤ ∞. Write S
(ε)
Ω,h(f) =

∑
k∈Z σΩ,h,θ,k ∗ f. By Hölder’s inequality we have

|σ̂Ω,h,θ,k(ξ)| ≤ ‖h‖Lγ(R+,dt/t)

(∫ θk+1

θk

∣∣∣∣∫
Sn−1

Ω(x)e−itξ·xdσ(x)

∣∣∣∣γ′ dt

t

) 1
γ′

≤ (log θ)
2−γ′
2γ′ ‖h‖Lγ(R+,dt/t) Hk(ξ),

whereHk(ξ) is defined as in (3.5). Thus, by the last inequality and (3.5) we obtain

(3.18) |σ̂Ω,h,θ,k(ξ)| ≤ C(log θ)1/γ′ ‖Ω‖q min
{∣∣θkξ

∣∣− λ
q′ ,
∣∣θk+1ξ

∣∣ λ
q′
}

.

By Lemma 2.3, (3.18) and invoking Lemma 2.1 withθ = 2q′ , ak = θk we obtain (1.8) for
2 < γ ≤ ∞ andγ′ < p < ∞ with Cp independent ofε. Sinceγ′ < 2, we get (1.8) for
2 ≤ p < ∞ and2 < γ ≤ ∞. By duality and Fatou’s lemma we obtain (1.8) for1 < p < ∞ and
2 < γ ≤ ∞. This completes the proof of (1.8).

The proof of (1.9) follows immediately from Theorem 1.5 and

MΩ,hf(x) ≤M(γ,∗)
Ω f(x)

for anyh ∈ Lγ(R+, dt/t) , 1 < γ < ∞. �

Proofs of Theorems 1.7 and 1.8.A proof of each of these theorems follows by Theorems 1.4 –
1.6 and an extrapolation argument. For more details, see [6], [21]. �
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