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1. INTRODUCTION

It is interesting to know under which conditions the triangle inequality reverses in a normed
spaceX; in other words, we would like to know if there is a constantith the property that
ey opoy Nzl < I1>°5_; x| for some finite sety,...,z, € X. M. Nakai and T. Tada [7]
proved that the normed spaces with this property for any finitecget ., z, € X are only
those of finite dimension.

The first authors to investigate the reverse of the triangle inequality in inner product spaces
were J. B. Diaz and F. T. Metcalf![2]. They did so by establishing the following result as an
extension of an inequality given by M. Petrovich [8] for complex numbers:

Theorem 1.1 (Diaz-Metcalf Theorem)Let a be a unit vector in the inner product space
(H;(-,-)). Suppose the vectotg € H, k € {1,...,n} satisfy

Re(zy, a)

2l

n
Pyl <
k=1

0<r< , ke{l,....,n}.

Then

Y

n
D
k=1
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where equality holds if and only if

n n
Zxk = rz ||z a.
k=1 k=1

Inequalities related to the triangle inequality are of special interest; cf. Chapter XVII of [6]
and may be applied to obtain inequalities in complex numbers or to study vector-valued integral
inequalities([3], [[4].

Using several ideas and the notation [of [3], [4] we modify or refine some results of S.S.
Dragomir to procure some new reverses of the triangle inequality (see also [1]).

We use repeatedly the Cauchy-Schwarz inequality without mentioning it. The reader is re-
ferred to [9], [5] for the terminology of inner product spaces.

2. MAIN RESULTS

The following theorem is an improvement of Theorem 2.1.0f [4] in which the real numbers
r1,T9 are not neccesarily nonnegative. The proof seems to be different as well.

Theorem 2.1. Leta be a unit vector in the complex inner product sp&ég (-, -)). Suppose
that the vectors;, € H, k € {1,...,n} satisfy

(2.1) 0< TfokH < Re(xg, ma), 0< r%kaH < Im(zg, roa)

for somery, vy € [—1,1]. Then we have the inequality

n
>
k=1

(2.2) (122> ]l <
k=1

The equality holds irf (2] 2) if and only if

(2.3) D wp=(r+ira) Y |alla.
k=1 k=1

Proof. If 72 + r2 = 0, the theorem is trivial. Assume that + r2 # 0. Summing inequalities
(2.1) overk from 1 to n, we have

(ri +713) Z llzk| < Re <Z xk,r1a> + Im <Z T, r2a>
k=1 k=1 k=1
= Re <Z Ty, (11 + im)a>
k=1

< <Z Tk, (7’1 + 7;7"2)a>‘
k=1

D

k=1

IN

[|(r1 +ira)all

n
D
k=1

= (rf+73)?

Hence[(2.R) holds.
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If (2.3) holds, then

n n
Zl’k (r1 +irs) Z [z |a
k=1 k=1

Conversely, if the equality holds if (2.2), we have

Zxk (ri + 73 Z (]
< Re <Z Tg, (11 + Z'TQ)a>

§ <Z.ﬁlﬁk, (7’1 +iT2)a>‘

n
<EEr3) > m
k=1

n
= (3132 -
k=1

1
T1+r2 2

From this we deduce

<Z$k, r1+ire)a >‘

Consequently there exists> 0 such that

Zxk = n(ry + iry)a.
k=1

Zxk (4 + irs)all

From this we have

n
D

k=1

n=> llzll.
k=1

1 :
(rf +73)2n = In(ry + irz)al| =

n
1
= (rF+19)2 ) llall
k=1

Hence

OJ

The next theorem is a refinement of Corollary 1[0f [4] since, in the notation of The¢orém 2.1,
V2—pi—pi <o+ ad.

Theorem 2.2.Leta be a unit vector in the complex inner product spéagk (-, -)). Suppose the
vectorsz, € H — {0}, k € {1,...,n}, are such that

(2.4) lzk — all < p1, ||ox —ial| <p2y, p1,p2 € <07 vVa?+ 1) )

wherea = min; <<, ||zx||. Let

2 2 1
a1_min{”xk” pit :1§k§n},

2||z|

2 2 1
agzmin{nxk” Pyt :1§k‘§n}.

2||z|
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Then we have the inequality

n

>a

k=1

Y

n
(0 +03)7 Y [leall <
k=1

where the equality holds if and only if

n n
D ap=(on +iag) Y [a]a
k=1 k=1

Proof. From the first inequality i (2]4) we have
(x), — a, 2 — a) < pf,
lzxl? +1—p? < 2Relap,a), k=1,...,n,

and
e ? — p7 + 1
2||zx |

lzx]l < Re (g, a).

Consequently,
aq||zg]| < Re(xg, a).

Similarly from the second inequality we obtain
asllzk|| < Re(xg,ia) = Im(zg, a).
Now apply Theorer 2]1 for, = ay, 72 = as. O

Corollary 2.3. Leta be a unit vector in the complex inner product spéég (-, -)). Suppose
that the vectors;, € H — {0}, k € {1,...,n} such that

|z —al <1, |z — dal < 1.
Then

?

n n
[0
= lal <[>

in whicha = min; <<, ||z¢||. The equality holds if and only if

n

1414) —
3w =al ; );kaua.

k=1

Proof. Apply Theorenj 2.p for, = § = as. O

Theorem 2.4. Let a be a unit vector in the inner product spac#; (-,-)) over the real or
complex number field. Suppose that the vectprs H — {0}, k € {1,...,n} satisfy

|lzk, —a|| <p, pe (0, Va?+ 1) , a= 11<nkl£1n\|:ck\|

Then we have the inequality

)

n
ar Y il <
k=1

n
D>
k=1

where

2 .2 1
Ozlzmin{kaH Pt :1§k§n}.
2| |
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The equality holds if and only if

n n
Zxk = Z |k ||a.
k=1 k=1

Proof. The proof is similar to Theorem 2.2 in which we use Theofer 2.1 witk 0. O

The next theorem is a generalization of Theofenm 2.1. It is a modification of Theorem 3 of
[4], however our proof is apparently different.

Theorem 2.5.Letay, . . ., a,, be orthonormal vectors in the complex inner product spdee(-, -) ).
Suppose that for <t < m, r, p, € R and that the vectors, € H, k € {1,...,n} satisfy

(2.5) 0 < r7l|lag| < Re(wg, rear), 0 < p?l|oe| < Im(wg, pras), t€{1,...,m}.
Then we have the inequality

(2.6) (Z ry +P§) > ]l <
k=1

t=1

The equality holds irf (21 7) if and only if

(27) Zxk = Z kaH Z(Tt + ipt)(lt
k=1 k=1 t=1

Proof. If 37" (r7 + p7) = 0, the theorem is trivial. Assume that;" (17 + p7) # 0. Summing
inequalities[(2.) ovek from 1 to n and again ovet from 1 to m, we get

Z (r? + p7) Z |24]| < Re <Zxk,2nat> +1Im <Z$k,z,otat>

n
D
k=1

= Re Zxk, Zrtat> + Re <Z xk,intat>
k=1 t=1 k=1 t=1

= Re Tk, Z(rt + i,ot)at>
| -

<Z T, ) (1t ipt)at>

k=1 t
(Tt + ipt)at

Ms

IN

Il
—

]
NE

Lk

k=1

I
W

=

I
3

=
N
NE

~
I
—

(rf + p?))
Then

(2.8) (Z(r? + pf>> > | <
k=1

If holds, then

n
D
k=1

2 > (re+ip)a
-1 t=1
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Conversely, if the equality holds , we obtain from[(2.]6) that

(Z + 0 ) Z(T‘? + o) [l
< Re <Z Tr, Z(rt + ipt)at>

< <Zxk,z ri+ipga >‘

I
(= £
3
NE
=
_|_

S

Thus we have

<Zxk,z Ty +@,0t >‘
k=1

n
2

Consequently there exists> 0 such that

m

dowme=n)y (rn+ip)a
k=1 t=1

from which we have

n (Z(T?JFP?)) = n>_(re+ip)as

t=1

n

— >
k=1
n m %

S (z wpt) |
k=1

t=1

Hence
n= llzl.
k=1
0
Corollary 2.6. Letay,...,a, be orthornormal vectors in the inner product spadé; (-, -))

over the real or complex number field. Supposelfox ¢ < m that the vectors:, € H,
ke {l,...,n} satisfy

0 < r{flzxll < Re(zk, rea).
Then we have the inequality

(z ) >l <3

t=1
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The equality holds if and only if

n

n m
T = ||:kaZTtat.
1 t=1

k=1 k=
Proof. Apply Theoren 2.5 fop, = 0. O
Theorem 2.7. Let a4, ...,a,, be orthornormal vectors in the complex inner product space

(H;(-,-)). Suppose that the vectars € H — {0}, k € {1,...,n} satisfy
|’$k - at” S Dt, ka - iat” S qt, Dt Gt € <O7 v 042 + 1) 3 1 S t S m,

wherea = ming <<, ||zx|. Let
2 .2 1
at:min{kaH pi + :1§k§n}7
2|
w2 — g} + 1
2|z

By = min {
Then we have the inequality
(St st) Yot <
t=1 k=1
where equality holds if and only if
S =kl D (o +iB)ay.
k=1 k=1 t=1

Proof. For1 <t <m, 1 < k < nitfollows from ||x; — a;|| < p; that

:1§k:§n}.

Y

n
D
k=1

<5L"k: - at>737k - at> < p?,

2 2
||93k||2||w51|t +1 [zl < Re{zy, ar),
atl|z]| < Re(we, ar),
and similarly
Gillzk] < Re(xy,iay) = Im{xy, ay).
Now applying Theorem 214 with, = o, p; = 5, we deduce the desired inequality. O
Corollary 2.8. Leta,,...,a, be orthornormal vectors in the complex inner product space

(H; (-,-)). Suppose that the vectars € H, k € {1,...,n} satisfy
|lor —ae|| <1, |logp —ia]| <1, 1<t<m.
Then

«a n
—\/m el <
The equality holds if and only if

S a=a S Y a
k=1 k=1 t=1

Proof. Apply Theorenj 2.[7 fory, = § = ;. O

n
D
k=1
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Remark 2.9. It is interesting to note that

I zall
m < L <1,
D]

/2
a <4/ —.
m

Corollary 2.10. Leta be a unit vector in the complex inner product spéeg (-, -)). Suppose
that the vectors:, € H — {0}, k € {1,...,n} satisfy

\/_

where

lzk — all <p1, |ze —ial| <p2,  p1,p2 € (0,1].

Let
2 2 1
Ozlzmin{kaH Pt :1§k§n},
2|zl
2 2 1
Ozzzmin{kaH Pyt :1§k§n}.
2|z

If oy # (1 — p2)2, or ap # (1 — p2)2, then we have the following strictly inequality
>
k=1

Proof. If equality holds, then by Theorem 2.2 we have

Za:k (2 - p} — p3) lexkll

1
2=pl=p3)2 > |l <
k=1

(of +a3)? Z |2k <

and so
1 1
(af +03)2 < (2—p; —p3)2.
On the other hand far < k < n,

[2]]> — pT 4+ 1 1
Mol >
and so
ar = (1-p})?
Similarly
az > (1—pd)
Hence
(2-pi—p3)? < (a}+a3)?
Thus
0} +af = (2—p} —pd)?
Therefore
ar=(1-p}): and ay=(1-pd)2,
a contradiction. O

The following result looks like Corollary 2 of [4].
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Theorem 2.11.Leta be a unit vector in the complex inner product spage (-, -)), M > m >
0,L>¢>0andz, € H— {0}, k€ {1,...,n} such that

Re(Ma — xg,xx — ma) >0, Re(Lia — xy, x) — lia) > 0,

or equivalently,

m+ M M—m L+, L—17
(e af < N ial| £ ——.
2 2 2
Let ,
| Nzl +mM }
Oy =Ming ——————— 1<k <n
{(m+M)HkaH
and ,
| NJag|® + L }
o =ming ——————:1<k<n;.
{(HL)H%H

Then we have the inequlity

n
1
(@2 +a2) S [l < .
k=1

n
D
k=1

The equality holds if and only if
Zﬂﬂk = (Qum,nr + iy ) Z [aies
k=1

k=1

Proof. For eachl < k < n, it follows from

e — 2 M < 2
that
m+ M m+ M M —m\?
(-t o) < (57)
Hence
llzkl|? +mM < (m + M) Re(wy, a).
Then ol Y
Tl +m
mﬂﬁc” < Re(zy, a),

and consequently
A ||k < Re(zy, a).
Similarly from the second inequality we deduce
aprllzel] < Im(zy, a).

Applying Theoreni 2]1 for, = a, s, 2 = oy, We infer the desired inequality. O

Theorem 2.12.Leta be a unit vector in the complex inner product spage (-, -)), M > m >
0,L>¢>0andz, € H— {0}, k€ {1,...,n} such that

Re(Ma — zg, xp —ma) >0, Re(Lia — xy, x — lia) > 0,
or equivalently

m+ M L+7.

na

Ty — all < T —
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Let
2 M
I {kaH +m §k<n}
(m + M)||zy]|
and
- w]® + CL }
aur =ming —————: 1 <k <n;.
{(HL)H:ka
If v s # 2mv D orag + 2;/&, then we have
mM 3 "
2 <
((m+M) €+L ) ZkaH Z“
Proof. If

mM
(M ) Sl -
then by Theorern 2.11 we have

n
1
(a2 + i) Y ol <
k=1

n
Do
k=1

ﬁ((mﬁ%) £+L ) Z““‘“

Consequently

N

(@2, +aip )z <2 mM + t :
AT T =T (m+ M)?2 T (04 L))

On the other hand far < k£ < n,

|zx||? + mM vmM and |zx||? + (L VL
(m+ M)||xl| = m+ M’ 0+ L)||ze]] = €+ L
SO
1
9 9 1 mM (L 2
(Qpar + )2 > 2 ((m+M)2 + (€—|—L)2)
Then
1
M /L 2
(mM—i_aéL);:z( = )
(m+ M) ({+1L)
Hence
N 2\/m]\/[
m,M m+M
and
(+ L

a contradiction.

Finally we mention two applications of our results to complex numbers.
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Corollary 2.13. Leta € C with |a| = 1. Suppose that, € C, k € {1,...,n} such that
|z —a|l <p1, |z —ia| <pa, pr,p2 € <0> va? + 1) ;

where
a=min{|z| : 1 <k <n}.
Let
2 .2 1
alzmin{M:lngn},
2| 2|
2 _ 2 1
agzmin{lengn}.
2| 2|

Then we have the inequality

n
EZk.

k=1

n
yoi+ad) lal<
k=1

The equality holds if and only if

sz = (a1 + i) <Z |zk|) a.

k=1

Proof. Apply Theorem 2.2 ford = C. O
Corollary 2.14. Leta € C with |a| = 1. Suppose that, € C, k € {1,...,n} such that

|z —al <1, |z —ia] <1
If @ = min{|z;| : 1 <k < n}. Then we have the inequality

a n
752l <
V2ig

n

>

k=1

the equality holds if and only if

sz = a(l ;— i) (Z |zk\) a.
k=1 k=1

Proof. Apply Corollary[2.3 ford = C. O
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