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ABSTRACT. Formulas for stable differentiation of piecewise-smooth functions are given. The
data are noisy values of these functions. The locations of discontinuity points and the sizes of
the jumps across these points are not assumed known, but found stably from the noisy data.
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1. INTRODUCTION

Let f be a piecewis&?([0,1]) function,0 < z; < 2o < -+ < z;,1 < j < J, are
discontinuity points off. We do not assume their locatioms and their numbet/ known a
priori. We assume that the limit§x; £ 0) exist, and

(1.2) sup  |f™(z)| < M,,, m=0,1,2

e#w; 1<j<T

Assume thaffs is given,|| f — fs|| := sup, 4., 1<j<s |f — f5| < 6, wherefs € L>(0,1) are the
noisy data.

The problem is: giver f5,d}, wheres € (0,60) andd, > 0 is a small number, estimate
stably f’, find the locations of discontinuity points of f and their numbet/, and estimate the
jumpsp; := f(z; +0) — f(x; — 0) of f acrossz;, 1 < j < J.

A stable estimate?; f5 of f’ is an estimate satisfying the relatiom; ., ||Rs fs — f'|| = 0.

There is a large literature on stable differentiation of noisy smooth functions (e.g., see refer-
ences inl[[3]), but the problem stated above was not solved for piecewise-smooth functions by
the method given below. A statistical estimation of the location of discontinuity points from
noisy discrete data is given in/[1]. In/[5]/[7]./[2], various approaches to finding discontinuities
of functions from the measured values of these functions are developed.
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2 A.G. RaMM

The following formula was proposed originally (in 1968, sele [4], and [3]) for stable estima-
tion of f'(x), assumingf € C?(]0, 1]), M, # 0, and given noisy datg;:

12) Rofy= PO PEZROD ) (54—5) W) < 2 < 1 h(o),
and
(13) HR(gf(g — f/” < v 2M2(5 = 6((5),

where the norm in[(I]3) is th>(0,1)—norm. The numerical efficiency and stability of the
stable differentiation method proposed!in [4] has been demonstrated in [6]. Moreover, (cf [3]),

(1.4) inf sup ||Tfs — f'|| > <(d),
T feK(Ms,5)

whereT : L>°(0,1) — L*(0, 1) runs through the set of all bounded operatdt§) s, §) :=
{f " < M, ||f — fs5]] < d}. Therefore[(1.2) is the best possible estimatg’ofgiven
noisy datafs, and assuming € K (M, d).

In [3] this result was generalized to the cagec K(M,,6), ||f@] < M,, 1 < a < 2,
wherel| f@ || := || fI| + || /]| + sup,.. % 1 < a <2, andf@ is the fractional-order
derivative off.

The aim of this paper is to extend the above results to the case of piecewise-smooth functions.
In Sectiorj P the results are formulated, and proofs are given. In Sg¢tion 3 the case of continuous
piecewise-smooth functions is treated.

2. FORMULATION OF THE RESULT

Theorem 2.1. Formula (1.2) gives stable estimate ¢f on the set
J
Ss = [h(8),1 = h(8)] \ (J(x; = h(6),x; + h(3)),
j=1

and (I.3) holds with the norm| - || taken on the sefs. AssumingV/, > 0 and computing the

quantitiesf; := LU=l fywhereh, = h(5) = (1@—‘2)5 1 < j <[], for sufficiently
smallé, one finds the location of discontinuity pointsfofvith accuracy2h, and their number
J. Here [%] is the integer smaller tha% and closest tqlz. The discontinuity points of are
located on the interval§jh — h, jh + h) such that f;| > 1 for sufficiently smalb, wherezs(9)
is defined in[(1]3). The sizeg of the jump off across the discontinuity point; is estimated by

the formulap; =~ fs(jh + h) — f5(jh — h), and the error of this estimate &(v/9).

Let us assume thatin, |p,| := p > h(d), where>> means "much greater than". Thepis
located on thg' interval[jh — h, jh + h], h := h(J), such that

fs(jh+h) — fs(jh — h)
2h

(2.1) 15l = > 1,

jh=R)| _ &

—E,and

so thatr; is localized with the accuracy:(6). More precisely| f;| > LI
¢ = 0.5¢(3), wheres(5) is defined in[(1.8). One has

[fGh+h) = f(Gh =M = |pi| = [f(Gh+h) = fz; + 0)| = [f(jh = h) = f(x; = O)]
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Thus,
p;] p;]
|fj‘ 2 ﬁ — Ml — 058(5) = Clﬁ —Cy > 1,
wherec; = ‘2/%, andc, := M + 0.5¢(0).
The jumpp, is estimated by the formula:
(2.2) pj = [fs(Gh+ h) = fs(jh — h)],

and the error estimate of this formula can be given:

@3) I~ slih+ h) — fo(ih — ]| < 20 + 2000 = 25+ 201y | 20 = O(V3).
2

Thus, the error of the calculation pf by the formulap; ~ fs(jh + h) — fs(jh — h) is 0(5%)
asd — 0.

Proof of Theorem 2]1If = € S;, then using Taylor’s formula one gets:

(2.4) (Bsfo)(w) — ()] < 04 22

Here we assume that/, > 0 and the intervalz — h(0),z + h(J)) C Ss, i.e., this interval
does not contain discontinuity points ¢f If, for all sufficiently smallh, not necessarily for

h = h(6), inequality (2.4) fails, i.e., if(Rs f5)(z) — f'(z)| > £ + 222 for all sufficiently small

h > 0, then the intervalz — h, x + h) contains a point; ¢ Ss, i.e., a point of discontinuity of

f or f’. This observation can be used for locating the position of an isolated discontinuity point
x; of f with any desired accuracy provided that the $jzeof the jump off acrosse; is greater
than4s, [p,;| > 46, and that: can be taken as small as desirable. Indeed, & (z — h,x + h),

then we have

Ipj| —2h My — 20 < |fs(x + h) — fs(x — h)| < |p;| + 2hM; + 20.
The above estimate follows from the relation

|fs(x +h) — fs(z — h)]|
=|f(x+h) = flz; +0) +p; + fx; —0) = f(x — h) £ 24|
= ||p;| £ (2hM; + 26)|.

Here|p + b|, whereb > 0, denotes a quantity such that — b < |p £ b| < |p| + b. Thus, ifh

is sufficiently small andp;| > 46, then the inequalitgd — 2hM; < |fs(z + h) — fs(x — h)|

can be checked, and therefore the inclusiore (x — h,z + h) can be checked. Sinde> 0

is arbitrarily small in this argument, it follows that the location of the discontinuity pojruf

f is established with arbitrary accuracy. Additional discussion of the case when a discontinuity
pointz; belongs to the intervdle — h(6), x + h(0)) will be given below.

Minimizing the right-hand side of (2.4) with respect/oyields formula[(1.R) for the mini-
mizerh = h(d) defined in[(1.R), and estimafe ([L.3) for the minimum of the right-hand side of
24).

If p > h(9), and [2.1) holds, then the discontinuity points are located with the accuracy
2h(9), as we prove now.

Consider the case when a discontinuity painof f belongs to the interveljh — h, jh + h),
whereh = h(6). Then estimatg (2] 2) can be obtained as follows. jor h < z; < jh + h,
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one has

|f(z; +0) — f(x; —0) — fs(jh + h) + fs(jh — P)|
<20+ |f(z; +0) = f(Gh + R)| + [f(x; = 0) — f(jh — h)|
<264+ 2hMy,  h=h(5).

This yields formulas (2]2) andl (2.3). Computing the quantifigfor 1 < j < [+], and finding
the intervals on which (2| 1) holds for sufficiently smalbne finds the location of discontinuity

points of f with accuracy2h, and the number of these points. For a small fixed > 0
the above method allows one to recover the discontinuity points afwhich | f;| > ';’;L' -

$ — M, > 1. This is the inequality (2]1). If = A(6), then? = 0.5¢(6) = O(/9), and
12hf; — p,| = O(V/§) asé — 0 provided that\f, > 0. Theore is proved. O

Remark 2.2. Similar results can be derived |iff || 1o (s;) := |/ @|ls; < Mo, 1 < a < 2. 1In
1

this caseh = h(d) = c,0«, wherec, = [ , Rs fs is defined in[(1.R), and the error of

the estimate is:

M(a 1:|

/ L 2 @
|Rsfs — [lls; < abMg (—) P

a—1

The proof is similar to that given in Sectiph 3. It is proved|[in [3] that f&rfunctions given
with noise it is possible to construct stable differentiation formulas:# 1 and it is impossible

to construct such formulasif < 1. The obtained formulas are useful in applications. One can
also use the.’-norm onsS; in the estimatd| f(||s, < M, (cf. [3]).

Remark 2.3. The case whei/, = 0 requires a special discussion. In this case the last term on
the right-hand side of formulé (2.4) vanishes and the minimization with respéchécomes
void: it requires that be as large as possible, but one cannot fakebitrarily large because
estimate[(2)4) is valid only on the interval — £, = + k) which does not contain discontinuity
points of f, and these points are unknown Mg, = 0, thenf is a piecewise-linear function. The
discontinuity points of a piecewise-linear function can be found if the gjz¢®of the jumps

of f across these points satisfy the inequalityl > 26 + 2\, h for some choice oh. For
instance, ifh = °-, then26 + 2M,h = 44. So, if |p;| > 44, then the location of discontinuity
points of f can be found in the case whai, = 0. These points are located on the intervals for
which |fs(jh + h) — fs(jh — h)| > 46, whereh =

The size|p;| of the jump of f across a discontinuity point; can be estimated by formula
) withh = M , and one assumes that € (jh — h, jh + h) is the only discontinuity point
onthis interval. The error of the formula (2.2) is estimated as in the proof of Théorém 2.1. This
error is not more thafd + 2M,h = 46 for the above choice of =

One can estimate the derivative ffat the point of smoothness gfassumingM, = 0
provided that this derivative is not too small.Mf, = 0, thenf = a;x + b; on every interval\ ;
between the discontinuity points, wherea; andb; are some constants (fh —h,jh+h) C
Aj, and f; = LUEZSURD Sthen|f; — ;] < 2. Chooseh = £, wheret > 0 is a
parameter, anrM1 maxj |ajl. Then the relatlve error of the approximate formajex f; for

the derivativef’ = a; on A; equals to’ - ozl < 2. Thus, if, €.9.Ja;| > 2 andt = 20, then
the relative error of the above approximate formula is not more @hian
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3. CONTINUOUS PIECEWISE -SMOOTH FUNCTIONS

Suppose now that € (mh — h,mh + h), wherem > 0 is an integer, and is a point at
which f is continuous bug’(¢) does not existThus, the jump off across is zero, but is not
a point of smoothness g¢f. How does one locate the poigf?

The algorithm we propose consists of the following. We assuméithat 0 on.Ss. Calculate

the numberg; := LUMNLsUR) and| £, — f],j = 1,2,..., h = h(5) = /2. Inequality

2h

(1.3) impliesf; —e(6) < f'(jh) < f; +¢(0), wheres(4) is defined in[(1.8).
Therefore, if| ;| > £(0), thensgn f; = sgn f'(jh).

One has: o 05
J_ES | fi+1— £l §J+f’
where? = 0.5¢(5) and J .= |LUAE2RSUGRJGREREIGR-R) | - ysing Taylor's formula, one
derives the estimate:
3.1) 0507 — £(8)] < J < 0.5111 + £(5)],

whereJ; == |f'(jh + h) — f'(jh)|.
If the interval(jh—h, jh+2h) belongs taSs, thenJ; = | f'(jh+h)— f'(jh)| < Mah = £(0).
In this caseJ < ¢(d), soO

(32) i1 — [l €25(0) i (jh—h,jh+2h) C 5.

Conclusion:If |fj11 — f;| > 2¢(6), then the intervaljh — h, jh + 2h) does not belong t6},
that is, there is a poinf € (jh — h, jh + 2h) at which the functiory is not twice continuously
differentiable with|f”| < M,. Since we assume that either at a pgjrthe function is twice
differentiable, or at this poinf’ does not exist, it follows that jf; 1 — f;| > 2¢(6), then there
is a point € (jh — h, jh + 2h) at which f” does not exist.

If
(3.3) Jifiv1 <0,
and
(3.4) min(| fj+1/, [f5]) > €(9),

then (3.8) impliesf’(jh) f'(jh + h) < 0, so the interval;jh, jh + h) contains a critical poing

of f, or a point{ at which f’ does not exist. To determine which one of these two cases holds,
let us use the right inequalitly (3.1). 4fis a critical point off and¢ € (jh, jh + h) C S, then

Ji < e(8), and in this case the right inequalify (8.1) yields

(3.5) | fie1 = fi] < 22(9).

Conclusion: If (8.3) — (3.5) hold, theq is a critical point. If (3.3) and[(3}4) hold an(¥;,, —

f;] > €(6) then¢ is a point of discontinuity of’.
If £ is a point of discontinuity off’, we would like to estimate the jump
P=|f(£+0)— f(£-0).

Using Taylor’s formula one gets

P
(3.6) firr = fi = 5 £2.5¢(9).
The expressiotl = B +b, b > 0, meansthaB — b < A < B + b. Therefore,
(3.7) P =2(fj1 — f3) £52(9).

We have proved the following theorem:
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Theorem 3.1.1f £ € (jh — h, jh + 2h) is a point of continuity off and |f;+1 — f;| > 2¢(6),
then¢ is a point of discontinuity of’. If (3.3)and (3.4)hold, and|f;.1 — f;| < 2¢(6), then¢
is a critical point of f. If (3.3)and (3.4)hold and|f;.1 — f;| > 2=(0), then¢ € (jh, jh+ h)is
a point of discontinuity of’. The jumpP of f” across¢ is estimated by formula (3.7).

4. FINDING NONSMOOTHNESS POINTS OF PIECEWISE -LINEAR FUNCTIONS

Assume thaf is a piecewise-linear function on the interj@l1] and0 < z; < --- <z, <1
are its nonsmoothness points, i.e, the discontinuity points @fthose off’. Assume thatfs
is known at a gridnh, m = 0,1,2,..., M, h = 57, fsm = fs(mh), |f(mh) — fsm| <6 Vm,
fm = f(mh). If mh is a discontinuity pointinh = x;, then we define its value g§z; — 0) or
f(xz;+0), depending on which of these two numbers satisfy the inequgltyh) — fs5.,.| < 0.

The problem is: giverys,, Vm, estimate the location of the discontinuity points their
number.J, find out which of these points are points of discontinuity @ind which are points
of discontinuity off’ but points of continuity off, and estimate the sizes of the jumps=
|f(x;40)— f(x; —0)| and the sizes of the jumps= |f'(z; +0) — f'(x; — 0)| at the continuity
points of f which are discontinuity points gf.

Let us solve this problem. Consider the quantities

m _2 m m—
G = fom+1 = 2f5m + fom—1

where
— fm+1_2fm+fm71 w.. — f&,erl_fm+1_2(f5,m_fm)+f5,mfl_fm
gm . 2h2 9 m - 2h2 .
We have
| 49 20
Wm| >~ 75 — s
2h%  h?
and

gm = 0if x; € (mh — h,mh+h) Vj.
Thereforejf min; |z, — x;| > 2h and

20

(4.1) |G| > L

then the intervalmh — h, mh 4+ h) must contain a discontinuity point gf This condition

is sufficient for the intervalmh — h, mh + h) to contain a discontinuity point of, but not

a necessary one: it may happen that the intefwal — h, mh + h) contains more than one
discontinuity point without changing,, or GG,,,, so that one cannot detect these points by the
above method. We have proved the following result.

Theorem 4.1. Condition [4.1) is a sufficient condition for the intervahh — h, mh + h) to
contain a nonsmoothness pointofIf one knows a priori that; ., — x; > 2h then condition
(4.1) is a necessary and sufficient condition for the intefwat — i, mh + h) to contain exactly
one point of nonsmoothness fof

Let us estimate the size of the jurpp Let us assume thdt (4.1) holds,., — z; > 2h and
x; € (mh—h, mh). The case whemn; € (mh, mh+h) is treated similarly. Lef (x) = a;x+b;
whenmh < z < z;, and f(z) = aj;1x + bj41 Whenz; < z < (m + 1)h, wherea;, b; are

constants. One has
— (a1 — a;)(mh — h) — (bj11 — b))
2h? ’

9m =
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and
p; = |(a’j+1 - aj)xj + b]’+1 — bj|
Thus
|G| = —(aj41 — aj)r; — (bjr1 — b;) — (aj41 — aj)(mh — h — x;)
2h2
_ by laj1 — ajllz; — (mh — h)|

~ 2h2 2h2 ’
where the symbobk + b meanse — b < a £ b < a + b. The quantityla;+; — a;| = ¢;, and
|z; — (mh — h)| < hif mh —h <z; < mh.

Thus,
pj q]h 2(5
=25 (5 + 5 ),
Gl =532 (2h2 * h2)
and —
il = 3 (14252
provided thap; > 0.
If
h + 40
% < landp; > 0,
j
then
If p; = 0then
_4G %
Gl = on S
Thus,

q; ~ 2h|Gm|
Finally, the number of the nonsmoothness point§ @an be determined as the number of
intervals on which[(4]1) holds.
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