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ABSTRACT. Let SB(X, Y ) be the set of all bounded sublinear operators from a Banach space
X into a complete Banach latticeY . In the present paper, we will introduce to this category the
concept of Cohenp-nuclear operators. We give an analogue to “Pietsch’s domination theorem”
and we study some properties concerning this notion.
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1. I NTRODUCTION AND TERMINOLOGY

The notion of Cohenp-nuclear operators (1 ≤ p ≤ ∞) was initiated by Cohen in [7] and
generalized to Cohen(p, q)-nuclear (1 ≤ q ≤ ∞) by Apiola in [4]. A linear operatoru between
two Banach spacesX, Y is Cohenp-nuclear for (1 < p < ∞) if there is a positive constantC
such that for alln ∈ N; x1, ..., xn ∈ X andy∗1, ..., y

∗
n ∈ Y ∗ we have∣∣∣∣∣

n∑
i=1

〈u (xi) , y∗i 〉

∣∣∣∣∣ ≤ C sup
x∗∈BX∗

‖(x∗ (xi))‖lnp
sup
y∈BY

‖(y∗i (y))‖ln
p∗

.

The smallest constantC which is noted bynp(u), such that the above inequality holds, is
called the Cohenp-nuclear norm on the spaceNp(X, Y ) of all Cohenp-nuclear operators from
X into Y which is a Banach space. Forp = 1 andp = ∞ we haveN1(X,Y ) = π1(X, Y ) (the
Banach space of all1-summing operators) andN∞(X, Y ) = D∞(X, Y ) (the Banach space of
all strongly∞-summing operators).

In [7, Theorem 2.3.2], Cohen proves that, ifu verifies a domination theorem thenu is p-
nuclear and he asked if the statement of this theorem characterizesp-nuclear operators. The
reciprocal of this statement is given in [8, Theorem 9.7, p.189], but these operators are called
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2 ACHOUR DAHMANE , MEZRAG LAHCÈNE, AND SAADI KHALIL

p-dominated operators. In this work, we generalize this notion to the sublinear maps and we
give an analogue to “Pietsch’s domination theorem” for this category of operators which is one
of the main results of this paper. We study some properties concerning this class and treat some
related results concerning the relations between linear and sublinear operators.

This paper is organized as follows. In the first section, we give some basic definitions and
terminology concerning Banach lattices. We also recall some standard notations. In the second
section, we present some definitions and properties concerning sublinear operators. We give
the definition of positivep-summing operators introduced by Blasco [5, 6] and we present the
notion of stronglyp-summing sublinear operators initiated in [3].

In Section 3, we generalize the class of Cohenp-nuclear operators to the sublinear operators.
This category verifies a domination theorem, which is the principal result. We use Ky Fan’s
lemma to prove it.

We end in Section 4, by studying some relations between the different classes of sublin-
ear operators (p-nuclear, stronglyp-summing andp-summing). We study also the relation be-
tweenT and∇T concerning the notion of Cohenp-nuclear sublinear operators, where∇T =
{u ∈ L(X, Y ) : u ≤ T} (L(X, Y ) is the space of all linear operators fromX into Y ). We prove
that, if T is a Cohen positivep-nuclear sublinear operator, thenu is Cohen positivep-nuclear
and consequentlyu∗ is positivep∗-summing. For the converse, we add one condition concerning
T .

We start by recalling the abstract definition of Banach lattices. LetX be a Banach space. If
X is a vector lattice and‖x‖ ≤ ‖y‖ whenever|x| ≤ |y| (|x| = sup {x,−x}) we say thatX is
a Banach lattice. If the lattice is complete, we say thatX is a complete Banach lattice. Note
that this implies obviously that for anyx ∈ X the elementsx and|x| have the same norm. We
denote byX+ = {x ∈ X : x ≥ 0}. An elementx of X is positive ifx ∈ X+.

The dualX∗ of a Banach latticeX is a complete Banach lattice endowed with the natural
order

(1.1) x∗1 ≤ x∗2 ⇐⇒ 〈x∗1, x〉 ≤ 〈x∗2, x〉 , ∀x ∈ X+

where〈·, ·〉 denotes the bracket of duality.
By a sublattice of a Banach latticeX we mean a linear subspaceE of X so thatsup {x, y}

belongs toE wheneverx, y ∈ E. The canonical embeddingi : X −→ X∗∗ such that
〈i(x), x∗〉 = 〈x∗, x〉 of X into its second dualX∗∗ is an order isometry fromX onto a sub-
lattice ofX∗∗, see [9, Proposition 1.a.2]. If we considerX as a sublattice ofX∗∗ we have for
x1, x2 ∈ X

(1.2) x1 ≤ x2 ⇐⇒ 〈x1, x
∗〉 ≤ 〈x2, x

∗〉 , ∀x∗ ∈ X∗
+.

For more details on this, the interested reader can consult the references [9, 11].
We continue by giving some standard notations. LetX be a Banach space and1 ≤ p ≤ ∞.

We denote bylp (X) (resp.lnp (X)) the space of all sequences(xi) in X with the norm

‖(xi)‖lp(X) =

(
∞∑
1

‖xi‖p

) 1
p

< ∞resp.
∥∥(xi)1≤i≤n

∥∥
lnp (X)

=

(
n∑
1

‖xi‖p

) 1
p


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COHEN p-NUCLEAR 3

and bylωp (X) (resp.ln ω
p (X)) the space of all sequences(xi) in X with the norm

‖(xn)‖lωp (X) = sup
‖ξ‖X∗=1

(
∞∑
1

|〈xi, ξ〉|p
) 1

p

< ∞resp.‖(xn)‖ln ω
p (X) = sup

‖ξ‖X∗=1

(
n∑
1

|〈xi, ξ〉|p
) 1

p


whereX∗ denotes the dual (topological) ofX andBX denotes the closed unit ball ofX. We
know (see [8]) thatlp (X) = lωp (X) for some1 ≤ p < ∞ iff dim (X) is finite. If p = ∞, we
havel∞ (X) = lω∞ (X). We have also if1 < p ≤ ∞, lωp (X) ≡ B (lp∗ , X) isometrically (where
p∗ is the conjugate ofp, i.e., 1

p
+ 1

p∗
= 1). In other words, letv : lp∗ −→ X be a linear operator

such thatv (ei) = xi (namely,v =
∑∞

1 ej ⊗ xj, ej denotes the unit vector basis oflp) then

(1.3) ‖v‖ = ‖(xn)‖lωp (X) .

2. SUBLINEAR OPERATORS

For our convenience, we give in this section some elementary definitions and fundamental
properties relative to sublinear operators. For more information see [1, 2, 3]. We also recall
some notions concerning the summability of operators.

Definition 2.1. A mappingT from a Banach spaceX into a Banach latticeY is said to be
sublinear if for allx, y in X andλ in R+, we have

(i) T (λx) = λT (x) (i.e., positively homogeneous),
(ii) T (x + y) ≤ T (x) + T (y) (i.e., subadditive).

Note that the sum of two sublinear operators is a sublinear operator and the multiplication by
a positive number is also a sublinear operator.

Let us denote by

SL(X, Y ) = {sublinear mappingsT : X −→ Y }
and we equip it with the natural order induced byY

(2.1) T1 ≤ T2 ⇐⇒ T1(x) ≤ T2(x), ∀x ∈ X

and
∇T = {u ∈ L(X, Y ) : u ≤ T (i.e.,∀x ∈ X, u(x) ≤ T (x))} .

A very general case when the set∇T is not empty is provided by Proposition 2.2 below.
Consequently,

(2.2) u ≤ T ⇐⇒ −T (−x) ≤ u(x) ≤ T (x), ∀x ∈ X.

Let T be sublinear from a Banach spaceX into a Banach latticeY . Then we have,
• T is continuous if and only if there isC > 0 such that for allx ∈ X, ‖T (x)‖ ≤ C ‖x‖ .

In this case we say thatT is bounded and we put

‖T‖ = sup
{
‖T (x)‖ : ‖x‖BX

= 1
}

.

We will denote bySB(X, Y ) the set of all bounded sublinear operators fromX into Y .
We say that a sublinear operatorT is positive if for allx in X, T (x) ≥ 0; is increasing if for

all x, y in X, T (x) ≤ T (y) whenx ≤ y.
Also, there is no relation between positive and increasing like the linear case (a linear operator

u ∈ L(X, Y ) is positive ifu(x) ≥ 0 for x ≥ 0).
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4 ACHOUR DAHMANE , MEZRAG LAHCÈNE, AND SAADI KHALIL

We will need the following obvious properties.

Proposition 2.1. LetX be an arbitrary Banach space. LetY, Z be Banach lattices.
(i) ConsiderT in SL(X,Y ) andu in L(Y, Z). Assume thatu is positive. Then,u ◦ T ∈

SL(X, Z).
(ii) Consideru in L(X,Y ) andT in SL(Y, Z). Then,T ◦ u ∈ SL(X, Z).

(iii) ConsiderS in SL(X, Y ) and T in SL(Y, Z). Assume thatS is increasing. Then,
S ◦ T ∈ SL(X, Z).

The following proposition will be used implicitly in the sequel. For its proof, see [1, Propo-
sition 2.3].

Proposition 2.2. Let X be a Banach space and letY be a complete Banach lattice. LetT ∈
SL(X, Y ). Then, for allx in X there isux ∈ ∇T such thatT (x) = ux(x) (i.e., the supremum
is attained,T (x) = sup{u(x) : u ∈ ∇T}).

We have thus that∇T is not empty ifY is a complete Banach lattice. IfY is simply a Banach
lattice then∇T is empty in general (see [10]).

As an immediate consequence of Proposition 2.2, we have:
• the operatorT is bounded if and only if for allu ∈ ∇T , u ∈ B (X,Y ) (the space of all

bounded linear operators).
We briefly continue by defining the notion of stronglyp-summing introduced by Cohen [7]

and generalized to sublinear operators in [3].

Definition 2.2. Let X be a Banach space andY be a Banach lattice. A sublinear operator
T : X −→ Y is stronglyp-summing (1 < p < ∞), if there is a positive constantC such that
for anyn ∈ N; x1, ..., xn ∈ X andy∗1, ..., y

∗
n ∈ Y ∗ we have

(2.3)
n∑

i=1

|〈T (xi) , y∗i 〉| ≤ C ‖(xi)‖lnp (X) sup
y∈BY

‖(y∗i (y))‖ln ω
p∗

.

We denote byDp(X, Y ) the class of all stronglyp-summing sublinear operators fromX into
Y and bydp(T ) the smallest constantC such that the inequality (2.3) holds. Forp = 1, we have
D1(X, Y ) = SB(X, Y ).

Theorem 2.3([3]). Let X be a Banach space andY be a Banach lattice. An operatorT ∈
SB (X, Y ) is stronglyp-summing (1 < p < ∞), if and only if, there exists a positive constant
C > 0 and a Radon probability measureµ onBY ∗∗ such that for allx ∈ X, we have

(2.4) |〈T (x) , y∗〉| ≤ C ‖x‖
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

) 1
p∗

.

Moreover, in this case

dp(T ) = inf {C > 0 : for all C verifying the inequality (2.4)} .

For the definition of positive stronglyp-summing, we replaceY ∗ by Y ∗
+ anddp(T ) by d+

p (T ).
To conclude this section, we recall the definition of positivep-summing sublinear operators,

which was first stated in the linear case by Blasco in [5]. For the definition ofp-summing and
related properties, the reader can see [1].

Definition 2.3. Let X, Y be Banach lattices. LetT : X −→ Y be a sublinear operator. We will
say thatT is “positivep-summing” (0 ≤ p ≤ ∞) (we writeT ∈ π+

p (X, Y )), if there exists a
positive constantC such that for alln ∈ N and all{x1, ..., xn} ⊂ X+, we have

(2.5) ‖(T (xi))‖lnp (Y ) ≤ C ‖(xi)‖ln ω
p (X) .
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COHEN p-NUCLEAR 5

We put
π+

p (T ) = inf {C verifying the inequality (2.5)} .

Theorem 2.4.A sublinear operator between Banach latticesX, Y is positivep-summing (1 ≤
p < ∞), if and only if, there exists a positive constantC > 0 and a Borel probabilityµ onB+

X∗

such that

(2.6) ‖T (x)‖ ≤ C

(∫
B+

X∗

〈x, x∗〉p dµ(x∗)

)1
p

for everyx ∈ X+. Moreover, in this case

π+
p (T ) = inf {C > 0 : for all C verifying the inequality (2.6)} .

Proof. It is similar to the linear case (see [5, 12]). �

If T is positivep-summing thenu is positivep-summing for allu ∈ ∇T and by [1, Corollary
2.4], we haveπ+

p (u) ≤ 2π+
p (T ). We do not know if the converse is true.

3. COHEN p−NUCLEAR SUBLINEAR OPERATORS

We introduce the following generalization of the class of Cohenp-nuclear operators. We give
the domination theorem for such a category by using Ky Fan’s Lemma.

Definition 3.1. Let X be a Banach space andY be a Banach lattice. A sublinear operator
T : X −→ Y is Cohenp-nuclear (1 < p < ∞), if there is a positive constantC such that for
anyn ∈ N, x1, ..., xn ∈ X andy∗1, ..., y

∗
n ∈ Y ∗, we have

(3.1)

∣∣∣∣∣
n∑

i=1

〈T (xi) , y∗i 〉

∣∣∣∣∣ ≤ C sup
x∗∈BX∗

‖(x∗(xi))‖lnp
sup
y∈BY

‖(y∗i (y))‖ln
p∗

.

We denote byNp(X,Y ) the class of all Cohenp-nuclear sublinear operators fromX into Y
and bynp(T ) the smallest constantC such that the inequality (3.1) holds. For the definition of
positive Cohenp-nuclear, we replaceY ∗ by Y ∗

+ andnp(T ) by n+
p (T ).

Let T ∈ SB(X, Y ) andv : lnp −→ Y ∗ be a bounded linear operator. By (1.3), the sublinear
operatorT is Cohenp-nuclear, if and only if,

(3.2)

∣∣∣∣∣
n∑

i=1

〈T (xi) , v(ei)〉

∣∣∣∣∣ ≤ C sup
x∗∈BX∗

‖(x∗(xi))‖lnp
‖v‖ .

Similar to the linear case, forp = 1 and p = ∞, we haveN1(X,Y ) = π1(X, Y ) and
N∞(X, Y ) = D∞(X, Y ).

Proposition 3.1. Let X be a Banach space andY, Z be two Banach lattices. ConsiderT in
SB(X, Y ), u a positive operator inB (Y, Z) andS in B (E, X).

(i) If T is a Cohenp-nuclear sublinear operator, thenu ◦T is a Cohenp-nuclear sublinear
operator andnp(u ◦ T ) ≤ ‖u‖np(T ).

(ii) If T is a Cohenp-nuclear sublinear operator, thenT ◦S is a Cohenp-nuclear sublinear
operator andnp(T ◦ S) ≤ ‖S‖np(T ).

Proof. (i) Let n ∈ N; x1, ..., xn ∈ X andz∗1 , ..., z
∗
n ∈ Z∗. It suffices by (3.2) to prove that∣∣∣∣∣

n∑
i=1

〈uT (xi) , z∗i 〉

∣∣∣∣∣ ≤ C sup
x∗∈BX∗

‖(x∗(xi))‖lnp
‖v‖
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6 ACHOUR DAHMANE , MEZRAG LAHCÈNE, AND SAADI KHALIL

wherev : Z −→ lnp∗ such thatv(z) =
∑n

i=1 z∗i (z)ei. We have∣∣∣∣∣
n∑

i=1

〈uT (xi) , z∗i 〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

〈T (xi) , u∗(z∗i )〉

∣∣∣∣∣
≤ np(T ) sup

x∗∈BX∗
‖(x∗(xi))‖lnp

‖w‖

where

w(y) =
n∑

i=1

〈u∗(z∗i ), y〉 ei,

=
n∑

i=1

〈z∗i , u(y)〉 ei,

= ‖u(y)‖
n∑

i=1

〈
z∗i ,

u(y)

‖u(y)‖

〉
ei.

This implies that

‖w‖ ≤ ‖u‖ sup
y∈BY

∥∥(z∗i (z))1≤i≤n

∥∥
≤ ‖u‖ ‖v‖ .

(ii) Let n ∈ N; e1, ..., en ∈ E andy∗1, ..., y
∗
n ∈ Y ∗. We have∣∣∣∣∣

n∑
i=1

〈T ◦ S (ei) , y∗i 〉

∣∣∣∣∣ ≤ np(T ) sup
x∗∈BX∗

(
n∑

i=1

|〈S (ei) , x∗〉|p
) 1

p

‖v‖

≤ np(T ) sup
x∗∈BX∗

‖S∗ (x∗)‖

(
n∑

i=1

∣∣∣∣〈ei,
S∗ (x∗)

‖S∗ (x∗)‖

〉∣∣∣∣p
) 1

p

‖v‖

≤ np(T ) ‖S‖ sup
e∗∈BE∗

(
n∑

i=1

|〈ei, e
∗〉|p
) 1

p

‖v‖ .

This implies thatT is Cohenp-nuclear andnp(T ◦ S) ≤ ‖S‖np(T ). �

The main result of this section is the next extension of “Pietsch’s domination theorem” for
the class of sublinear operators. For the proof we will use the following lemma due to Ky Fan,
see [8].

Lemma 3.2. Let E be a Hausdorff topological vector space, and letC be a compact convex
subset ofE. Let M be a set of functions onC with values in(−∞,∞] having the following
properties:

(a) eachf ∈ M is convex and lower semicontinuous;
(b) if g ∈ conv(M), there is anf ∈ M with g(x) ≤ f(x), for everyx ∈ C;
(c) there is anr ∈ R such that eachf ∈ M has a value not greater thanr.

Then there is anx0 ∈ C such thatf(x0) ≤ r for all f ∈ M .

We now give the domination theorem by using the above lemma.

Theorem 3.3. LetX be a Banach space andY be a Banach lattice. ConsiderT ∈ SB (X, Y )
andC a positive constant.

(1) The operatorT is Cohenp-nuclear andnp(T ) ≤ C.
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(2) For anyn in N, x1, ..., xn in X andy∗1, ..., y
∗
n in Y ∗ we have

n∑
i=1

|〈T (xi) , y∗i 〉| ≤ C sup
x∗∈BX∗

‖(x∗(xi))‖lnp
sup
y∈BY

‖(y∗i (y))‖ln
p∗

.

(3) There exist Radon probability measuresµ1 on BX∗ and µ2 on BY ∗∗ , such that for all
x ∈ X andy∗ ∈ Y ∗, we have

(3.3) |〈T (x) , y∗〉| ≤ C

(∫
BX∗

|x(x∗)|p dµ1(x
∗)

)1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

.

Moreover, in this case

np(T ) = inf {C > 0 : for all C verifying the inequality (3.3)} .

Proof. (1)⇒(2). LetT be inNp (X, Y ) and(λi) be a scalar sequence. We have∣∣∣∣∣
n∑

i=1

λi 〈T (xi) , y∗i 〉

∣∣∣∣∣ ≤ np(T ) sup ‖(λi)‖l∞
‖(xi)‖ln ω

p (X) sup
y∈BY

‖(y∗i (y))‖ln
p∗

.

Taking the supremum over all sequences(λi) with ‖(λi)‖l∞
≤ 1, we obtain

n∑
i=1

|〈T (xi) , y∗i 〉| ≤ np(T ) ‖(xi)‖ln ω
p (X) sup

y∈BY

‖(y∗i (y))‖ln
p∗

.

To prove that (2) implies (3). We consider the setsP (BX∗) andP (BY ∗∗) of probability measures
in C(BX∗)∗ andC(BY ∗∗)∗, respectively. These are convex sets which are compact when we
endowC(BX∗)∗ andC(BY ∗∗)∗ with their weak∗ topologies. We are going to apply Ky Fan’s
Lemma withE = C(BX∗)∗ × C(BY ∗∗)∗ andC = P (BX∗)× P (BY ∗∗).

Consider the setM of all functionsf : C → R of the form

(3.4) f((xi),(y∗i ))
(µ1, µ2) :=

n∑
i=1

|〈T (xi), y
∗
i 〉| − C

(
1

p

n∑
i=1

∫
BX∗

|xi(x
∗)|p dµ1(x

∗)

+
1

p∗

n∑
i=1

∫
BY ∗∗

|y∗i (y∗∗)|
p∗ dµ2(y

∗∗)

)
,

wherex1, ..., xn ∈ X andy∗1, ..., y
∗
n ∈ Y ∗.

These functions are convex and continuous. We now apply Ky Fan’s Lemma (the conditions
(a) and (b) of Ky Fan’s Lemma are satisfied). Letf, g be inM andα ∈ [0, 1] such that

f((x′i),(y′∗i ))(µ1, µ2) =
k∑

i=1

|〈T (x′i), y
′∗
i 〉| − C

[
1

p

k∑
i=1

∫
BX∗

|〈x′i, x∗〉|
p
dµ1(x

∗)

+
1

p∗

k∑
i=1

∫
BY ∗∗

|〈y′∗i , y∗∗〉|p
∗
dµ2(y

∗∗)

]
,

and

g((x′′i ),(y′′∗i ))(µ1, µ2) =
l∑

i=k+1

|〈T (x′′i ), y
′′∗
i 〉| − C

[
1

p

l∑
i=k+1

∫
BX∗

|〈x′′i , x∗〉|
p
dµ1(x

∗)

+
1

p∗

l∑
i=k+1

|〈y′′∗i , y∗∗〉|p
∗
dµ2(y

∗∗)

]
.
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8 ACHOUR DAHMANE , MEZRAG LAHCÈNE, AND SAADI KHALIL

It follows that

αf = α

[
k∑

i=1

|〈T (x′i), y
′∗
i 〉| − C

(
1

p

k∑
i=1

∫
BX∗

|〈x′i, x∗〉|
p
dµ1(x

∗)

+
1

p∗

k∑
i=1

∫
BY ∗∗

|〈y′∗i , y∗∗〉|p
∗
dµ2(y

∗∗)

)]

=
k∑

i=1

∣∣∣〈T (α 1
p x′i

)
, α

1
p∗ y′∗i

〉∣∣∣− C

(
1

p

k∑
i=1

∫
BX∗

∣∣∣〈α 1
p x′i, x

∗
〉∣∣∣p dµ1(x

∗)

+
1

p∗

k∑
i=1

∫
BY ∗∗

∣∣∣〈α 1
p∗ y′∗i , y∗∗

〉∣∣∣p∗ dµ2(y
∗∗)

)
= f((

α
1
p x′i

)
,

(
α

1
p∗ y′∗i

))(µ1, µ2),

and

f + g =
k∑

i=1

|〈T (x′i), y
′∗
i 〉| − C

(
1

p

k∑
i=1

∫
BX∗

|〈x′i, x∗〉|
p
dµ1(x

∗)

+
1

p∗

k∑
i=1

∫
BY ∗∗

|〈y′∗i , y∗∗〉|p
∗
dµ2(y

∗∗)

)
+

l∑
i=k+1

|〈T (x′′i ), y
′′∗
i 〉|

− C

(
1

p

l∑
i=k+1

∫
BX∗

|〈x′′i , x∗〉|
p
dµ1(x

∗) +
1

p∗

l∑
i=k+1

|〈y′′∗i , y∗∗〉|p
∗
dµ2(y

∗∗)

)

=
k∑

i=1

|〈T (x′i), y
′∗
i 〉|+

l∑
i=k+1

|〈T (x′′i ), y
′′∗
i 〉| − C

(
1

p

n∑
i=1

∫
BX∗

|〈xi, x
∗〉|p dµ1(x

∗)

+
1

p∗

n∑
i=1

∫
BY ∗∗

|〈y∗i , y∗∗〉|
p∗ dµ2(y

∗∗)

)

=
n∑

i=1

|〈T (xi), y
∗
i 〉| − C

(
1

p

n∑
i=1

∫
BX∗

|〈xi, x
∗〉|p dµ1(x

∗)

+
1

p∗

n∑
i=1

∫
BY ∗∗

|〈y∗i , y∗∗〉|
p∗ dµ2(y

∗∗)

)
with n = k + l,

xi =

{
x′i if 1 ≤ i ≤ k,

x′′i if k + 1 ≤ i ≤ l

and

y∗i =

{
y′∗i if 1 ≤ i ≤ k,

y′′∗i if k + 1 ≤ i ≤ l.

For the condition (c), sinceBX∗ andBY ∗∗ are weak∗ compact and norming sets, there exist for
f ∈ M two elements,x∗0 ∈ BX∗ andy0 ∈ BY ∗∗ such that

sup
x∗∈BX∗

n∑
i=1

|〈xi, x
∗〉|p =

n∑
i=1

|〈xi, x
∗
0〉|

p
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and

sup
y∈BY

‖(y∗i (y))‖p∗

ln
p∗

=
n∑

i=1

|〈y∗i , y0〉|p
∗
.

Using the elementary identity

(3.5) ∀α, β ∈ R∗
+ αβ = inf

ε>0

{
1

p

(α

ε

)p

+
1

p∗
(εβ)p∗

}
,

taking

α = sup
x∗∈BX∗

(
n∑

i=1

|〈xi, x
∗〉|p
) 1

p

, β = sup
y∈BY

‖(y∗i (y))‖ln
p∗

andε = 1, then

f
(
δx∗0

, δy0

)
=

n∑
i=1

|〈T (xi), y
∗
i 〉| −

C

p

(
sup

x∗∈BX∗

n∑
i=1

|〈xi, x
∗〉|p
)
− C

p∗
sup
y∈BY

‖(y∗i (y))‖p∗

ln
p∗

≤
n∑

i=1

|〈T (xi), y
∗
i 〉| − C

(
sup

x∗∈BX∗

n∑
i=1

|〈xi, x
∗〉|p
) 1

p

sup
y∈BY

‖(y∗i (y))‖ln
p∗

.

The last quantity is less than or equal to zero (by hypothesis (2)) and hence condition (c) is
verified by takingr = 0. By Ky Fan’s Lemma, there is(µ1, µ2) ∈ C with f (µ1, µ2) ≤ 0 for all
f ∈ M . Then, iff is generated by the single elementsx ∈ X andy∗ ∈ Y ∗,

|〈T (x) , y∗〉| ≤ C

p

∫
BX∗

|〈x, x∗〉|p dµ1(x
∗) +

C

p∗

∫
BY ∗∗

|〈y∗, y∗∗〉|p
∗
dµ2(y

∗∗).

Fix ε > 0. Replacingx by
1

ε
x, andy∗ by εy∗ and taking the infimum over allε > 0 (using the

elementary identity (3.5)), we find

|〈T (x) , y∗〉| ≤ C

{
1

p

[
1

ε

(∫
BX∗

|〈x, x∗〉|p dµ1(x
∗)

) 1
p

]p

+
1

p∗

[
ε

(∫
BY ∗∗

|〈y∗, y∗∗〉|p
∗
dµ2(y

∗∗)

) 1
p∗
]p∗


≤ C

(∫
BX∗

|〈x, x∗〉|p dµ1(x
∗)

) 1
p
(∫

BY ∗∗

|〈y∗, y∗∗〉|p
∗
dµ2(y

∗∗)

) 1
p∗

.

To prove that (3)=⇒(1), let x1, ..., xn ∈ X andy∗1, ..., y
∗
n ∈ Y ∗. We have by (3.3)

|〈T (xi) , y∗i 〉| ≤ C

(∫
BX∗

|xi(x
∗)|p dµ1(x

∗)

)1
p
(∫

BY ∗∗

|y∗i (y∗∗)|
p∗ dµ2(y

∗∗)

) 1
p∗
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for all 1 ≤ i ≤ n. Thus we obtain by using Hölder’s inequality∣∣∣∣∣
n∑

i=1

〈T (xi) , y∗i 〉

∣∣∣∣∣ ≤
n∑

i=1

|〈T (xi) , y∗i 〉|

≤ C

n∑
i=1

(∫
BX∗

|xi(x
∗)|p dµ1(x

∗)

)1
p
(∫

BY ∗∗

|y∗i (y∗∗)|
p∗ dµ2(y

∗∗)

) 1
p∗

≤ C

(∫
BX∗

n∑
i=1

|xi(x
∗)|p dµ1(x

∗)

)1
p
(

n∑
i=1

∫
BY ∗∗

|y∗i (y∗∗)|
p∗ dµ2(y

∗∗)

) 1
p∗

≤ C sup
x∗∈BX∗

(
n∑

i=1

|xi(x
∗)|p
)1

p

sup
y∈BY

∥∥(y∗i (y))1≤i≤n

∥∥
ln
p∗

.

This implies thatT ∈ Np(X, Y ) andnp(T ) ≤ C and this concludes the proof. �

4. RELATIONSHIPS BETWEEN πp(X, Y ), Dp(X, Y ) AND Np(X, Y )

In this section we investigate the relationships between the various classes of sublinear oper-
ators discussed in Section 2 and 4. We also give a relation betweenT and∇T concerning the
notion of Cohenp-nuclear.

Theorem 4.1.LetX be a Banach space andY be a Banach lattice. We have:

(1) Np(X, Y ) ⊆ Dp(X, Y ) anddp(T ) ≤ np(T ).
(2) Np(X, Y ) ⊆ πp(X, Y ) andπp(T ) ≤ np(T ).

Proof. (1) LetT ∈ Np(X, Y ). Let x ∈ X andy∗ ∈ Y ∗. We have by (3.3)

|〈T (x) , y∗〉| ≤ np(T )

(∫
BX∗

|x∗(x)|p dµ1(x
∗)

)1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

≤ np(T ) sup
x∗∈BX∗

|x∗(x)|
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

≤ np(T ) ‖x‖
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

so

|〈T (x) , y∗〉| ≤ np(T ) ‖x‖
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

.

Then, by Theorem 2.3,T is stronglyp-summing anddp(T ) ≤ np(T ).
(2) LetT be an operator inNp(X, Y )

‖T (x)‖ = sup
y∗∈BY ∗

|〈T (x) , y∗〉|

≤ sup
y∗∈BY ∗

np(T )

(∫
BX∗

|x∗(x)|p dµ1(x
∗)

)1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dµ2(y

∗∗)

) 1
p∗

≤ np(T )

(∫
BX∗

|x∗(x)|p dµ1(x
∗)

)1
p

sup
y∗∈BY ∗

‖y∗‖ .
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Then

‖T (x)‖ ≤ np(T )

(∫
BX∗

|x∗(x)|p dµ1(x
∗)

)1
p

and by Theorem 2.4,T is p-summing andπp(T ) ≤ np(T ). The proof is complete. �

Theorem 4.2.LetX be Banach space andY, Z be two Banach lattices. Let1 < p < ∞.

(1) Let T ∈ SB(X, Y ) andL ∈ SB(Y, Z). Assume thatL is increasing. IfL is a strongly
p-summing sublinear operator, andT is ap-summing sublinear operator, thenL ◦ T is
a Cohenp-nuclear sublinear operator andnp(L ◦ T ) ≤ dp(L)πp(T ).

(2) Consideru in B(Z,X) ap-summing operator andT in SB(X, Y ) a stronglyp-summing
one. Then,T ◦u is a Cohenp-nuclear sublinear operator andnp(T ◦u) ≤ dp(T )πp(u).

(3) ConsiderT in SB(X, Y ) a p-summing operator andv in B(Y, Z) a stronglyp-summing
one. Assume thatv is positive. Then,v ◦T is a Cohenp-nuclear sublinear operator and
np(v ◦ T ) ≤ dp(v)πp(T ).

Proof. (1) The operatorL ◦ T is sublinear by Proposition 2.1(iii). Letx ∈ X andz∗ ∈ Z∗. By
Theorem 2.3, we have

|〈L ◦ T (x) , z∗〉| = |〈L (T (x)) , z∗〉|

≤ dp(L) ‖T (x)‖
(∫

BZ∗∗

|z∗(z∗∗)|p
∗
dλ(z∗∗)

) 1
p∗

and by Theorem 2.4

≤ dp(L)πp(T )

(∫
BX∗

|x(x∗)|p dµ(x∗)

)1
p
(∫

BZ∗∗

|z∗(z∗∗)|p
∗
dλ(z∗∗)

) 1
p∗

,

so

|〈L ◦ T (x) , z∗〉| ≤ dp(L)πp(T )

(∫
BX∗

|x(x∗)|p dµ(x∗)

)1
p
(∫

BZ∗∗

|z∗(z∗∗)|p
∗
dλ(z∗∗)

) 1
p∗

.

This implies thatL ◦ T ∈ Np(X,Y ) andnp(L ◦ T ) ≤ dp(L)πp(T ).
(2) Follows immediately by using Proposition 2.1(ii), Theorem 2.3 and Theorem 2.4.
(3) The operatorv ◦ T is sublinear by Proposition 2.1(i). Lettingx ∈ X andz∗ ∈ Z∗, we have

|〈v(T (x)), z∗〉| = |〈T (x) , v∗(z∗)〉|
≤ ‖T (x)‖ ‖v∗(z∗)‖

because,v is stronglyp−summing iffv∗ is p∗−summing anddp(v) = πp∗(v
∗) (see [7, Theorem

2.2.1 part(ii)]), so

‖T (x)‖ ‖v∗(z∗)‖

≤ dp(v) ‖T (x)‖
(∫

BZ∗∗

|z∗∗(z∗)|p
∗
dµ2(z

∗∗)

) 1
p∗

≤ πp(T )dp(v)

(∫
BX∗

|x∗(x)|p dµ1(x
∗)

)1
p
(∫

BZ∗∗

|z∗∗(z∗)|p
∗
dµ2(z

∗∗)

) 1
p∗

.

This implies thatv ◦ T ∈ Np(X, Z) andnp(v ◦ T ) ≤ dp(v)πp(T ). �

We now present an example of Cohenp-nuclear sublinear operators.
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Example 4.1. Let 1 ≤ p < ∞ andn, N ∈ N. Let u be a linear operator fromln2 into lNp such
thatS(x) = |u (x)| . Let v be a linear operator fromLq(µ) (1 ≤ q < ∞) into ln2 . ThenT = S ◦v
is a Cohen2-nuclear sublinear operator.

Proof. Indeed,S (x) = |u (x)| is a strongly2-summing sublinear operator by [3], and by [7,
Lemma 3.2.2],v is 2-summing. Then by Theorem 4.2 part (2),T = S ◦ v is a Cohen2-nuclear
sublinear operator. �

Proposition 4.3. Let X be a Banach lattice andY be a complete Banach lattice. LetT be
a bounded sublinear operator fromX into Y . Suppose thatT is positive Cohenp-nuclear
(1 < p < ∞). Then for allS ∈ SB (X, Y ) such thatS ≤ T , S is positive Cohenp-nuclear.

Proof. Lettingxi ∈ X1 andy∗i ∈ Y ∗
+, by (1.2), we have

〈S(xi), y
∗
i 〉 ≤ 〈T (xi), y

∗
i 〉

and consequently, by (2.2),
−〈S(xi), y

∗
i 〉 ≤ 〈T (−xi), y

∗
i 〉

for all 1 ≤ i ≤ n. This implies that
n∑

i=1

|〈S(xi), y
∗
i 〉| ≤

n∑
i=1

sup {〈T (x), y∗i 〉 , 〈T (−x), y∗i 〉}

≤
n∑

i=1

sup {|〈T (x), y∗i 〉| , |〈T (−x), y∗i 〉|}

≤
n∑

i=1

|〈T (x), y∗i 〉|+
n∑

i=1

|〈T (−x), y∗i 〉|

and hence
n∑

i=1

|〈S(xi), y
∗
i 〉| ≤ 2n+

p (T ) sup
x∗∈BX∗

‖(x∗(xi))‖lnp
sup

y∈B+
Y

‖(y∗i (y))‖ln
p∗

.

Thus the operatorS is positive Cohenp-nuclear andn+
p (S) ≤ 2n+

p (T ). �

Remark 1. If S, T are any sublinear operators, we have no answer.

Corollary 4.4. If T is positive Cohenp-nuclear (1 < p < ∞), then for allu ∈ ∇T , u is positive
Cohenp-nuclear and consequentlyu∗ is positivep∗-summing.

Proof. Let T be a positive Cohenp-nuclear sublinear operator. Then for allu ∈ ∇T , u is
positive Cohenp-nuclear (replacingS by u in Proposition 4.3). Ifu is positive Cohenp-nuclear
(by Theorem 4.1,u is positive stronglyp-summing), thenu∗ is p∗-summing (see [7, Theorem
2.2.1 part(ii)]). �

We now study the converse of the preceding corollary with some conditions.

Theorem 4.5.LetX be Banach space andY be a complete Banach lattice. LetT : X → Y be
a sublinear operator. Suppose that there is a constantC > 0, a setI, an ultrafilterU on I and
{ui}i∈I ⊂ ∇T such that for allx in X andy∗ in Y ∗,

|〈ui (x) , y∗〉| −→
U

|〈T (x) , y∗〉|

andnp(ui) ≤ C uniformly. Then,T ∈ Np(X, Y ) andnp(T ) ≤ C.
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Proof. Sinceui is Cohenp-nuclear, by Theorem 3.3 there is a Radon probability measure
(µi, νi) onK = BX∗ ×BY ∗∗ such that for allx ∈ X andy∗ in Y ∗, we have

|〈ui (x) , y∗〉| ≤ np(ui)

(∫
BX∗

|x (x∗)|p dµi

) 1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dνi

) 1
p∗

.

As we have for allx in X and y∗ ∈ Y ∗,

|〈ui (x) , y∗〉| −→
U

|〈T (x) , y∗〉|

thus we obtain that for allx in X and y∗ ∈ Y ∗,

|〈T (x) , y∗〉| ≤ lim
U

np(ui)

(∫
BX∗

|x (x∗)|p dµi

) 1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dνi

) 1
p∗

.

The setK = BX∗ × BY ∗∗ is weak∗ compact, hence(µi, νi) converge weak∗ to a probability
(µ, ν) onK = BX∗ ×BY ∗∗ and consequently, for allx in X and y∗ ∈ Y ∗

|〈T (x) , y∗〉| ≤ C

(∫
BX∗

|x (x∗)|p dµ

) 1
p
(∫

BY ∗∗

|y∗(y∗∗)|p
∗
dν

) 1
p∗

.

This implies thatnp(T ) ≤ C. �
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