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ABSTRACT. Let SB(X,Y) be the set of all bounded sublinear operators from a Banach space
X into a complete Banach lattiéé. In the present paper, we will introduce to this category the
concept of Cohep-nuclear operators. We give an analogueRietsch’s domination theorém

and we study some properties concerning this notion.
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1. INTRODUCTION AND TERMINOLOGY

The notion of Cohem-nuclear operatorsl (< p < oo) was initiated by Cohen iri [7] and
generalized to Cohefp, g)-nuclear { < ¢ < oo) by Apiola in [4]. A linear operator; between
two Banach spaceX, Y is Cohenp-nuclear for { < p < ) if there is a positive constant
such that for alh € N; x4, ..., x,, € X andyj, ..., y% € Y* we have

> fula) )
=1

The smallest constard which is noted byn,(u), such that the above inequality holds, is
called the Cohep-nuclear norm on the spadé,(X,Y") of all Cohenp-nuclear operators from
X into Y which is a Banach space. Fpe= 1 andp = oo we haveNV;(X,Y) = m(X,Y) (the
Banach space of all-summing operators) anll,(X,Y) = D, (X,Y) (the Banach space of
all stronglyoco-summing operators).

In [7, Theorem 2.3.2], Cohen proves thatuifverifies a domination theorem thenis p-
nuclear and he asked if the statement of this theorem charactgringdear operators. The
reciprocal of this statement is given in [8, Theorem 9.7, p.189], but these operators are called

<C sup ||(z" ()
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p-dominated operators. In this work, we generalize this notion to the sublinear maps and we
give an analogue toPietsch’s domination theorénfor this category of operators which is one

of the main results of this paper. We study some properties concerning this class and treat some
related results concerning the relations between linear and sublinear operators.

This paper is organized as follows. In the first section, we give some basic definitions and
terminology concerning Banach lattices. We also recall some standard notations. In the second
section, we present some definitions and properties concerning sublinear operators. We give
the definition of positiveo-summing operators introduced by Blascol[5, 6] and we present the
notion of stronglyp-summing sublinear operators initiated|in [3].

In Sectior] B, we generalize the class of Cohearuclear operators to the sublinear operators.
This category verifies a domination theorem, which is the principal result. We use Ky Fan’s
lemma to prove it.

We end in Sectiof|4, by studying some relations between the different classes of sublin-
ear operatorsptnuclear, strongly-summing ang-summing). We study also the relation be-
tweenT andVT concerning the notion of Cohgnnuclear sublinear operators, whé&rgd” =
{ue L(X,Y):u<T}(L(X,Y)Iisthe space of all inear operators froxninto Y). We prove
that, if 7" is a Cohen positivg-nuclear sublinear operator, thens Cohen positive>-nuclear
and consequently* is positivep*-summing. For the converse, we add one condition concerning
T.

We start by recalling the abstract definition of Banach lattices. X_.&e a Banach space. If
X is a vector lattice andz|| < ||y|| whenevelz| < |y| (|z| = sup {z, —x}) we say thatX is
a Banach lattice. If the lattice is complete, we say tKais a complete Banach lattice. Note
that this implies obviously that for any € X the elements and|z| have the same norm. We
denote byX, = {z € X : x > 0}. An elementz of X is positive ifx € X,.

The dualX™* of a Banach latticeX is a complete Banach lattice endowed with the natural
order

(1.1) ] <ay <= (a],x) < (x5,x), VreX,
where(-, -) denotes the bracket of duality.

By a sublattice of a Banach latticé we mean a linear subspaéeof X so thatsup {z, y}
belongs toF wheneverz,y € E. The canonical embedding: X — X** such that
(i(x),z*) = (z*,z) of X into its second duaK** is an order isometry fronX onto a sub-
lattice of X**, see[[9, Proposition 1.a.2]. If we consid&ras a sublattice ok ** we have for
T1,L9 € X
(1.2) 11 < xp = (w1,27) < (22,2%), V2" e X7

For more details on this, the interested reader can consult the references [9, 11].

We continue by giving some standard notations. Kebe a Banach space ahdk p < oc.
We denote by, (X) (resp.l; (X)) the space of all sequences) in X with the norm

(@)l x) (Z H%Hp> <00
1
n P
reSp-H(%)gz‘SnHzg(X) = (Z ||$1Hp>
1
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and byl (X) (resp.l; “ (X)) the space of all sequences) in X with the norm

1
p
[l = sup (Zm, ) < o0

€]l =1
1

reSp-H(xn)ngw = Ssup <Z| i, § )

€]l x =1
where X* denotes the dual (topological) &f and By denotes the closed unit ball &f. We
know (seel[8]) that, (X) = I (X) for somel < p < oo iff dim (X) is finite. If p = oo, we
havel,, (X) =1 (X). We have also it < p < oo, (X) = B (l,+, X) isometrically (where
p* is the conjugate o, i.e.,% + pi = 1). In other words, lev : [,» — X be a linear operator
such thab (e;) = z; (namely,y = > " e; ® x;, e; denotes the unit vector basisipf then

(1.3) [v]| = ||(xn)||l;;(X)'
2. SUBLINEAR OPERATORS

For our convenience, we give in this section some elementary definitions and fundamental
properties relative to sublinear operators. For more information sée[1, 2, 3]. We also recall
some notions concerning the summability of operators.

Definition 2.1. A mapping7 from a Banach spac& into a Banach lattic&” is said to be
sublinear if for allz, y in X andX in R, we have

() T(\x) = AXT'(z) (i.e., positively homogeneous),
(i) T(x+y) <T(x)+T(y) (i.e., subadditive).
Note that the sum of two sublinear operators is a sublinear operator and the multiplication by
a positive number is also a sublinear operator.
Let us denote by
SL(X,Y) = {sublinear mappingg' : X — Y}
and we equip it with the natural order induced¥y
(21) T <T) <= Tl(l') < TQ(I), Vere X
and
VI ={ueL(X,)Y):u<T (ie,Voze X, ulx)<T(x))}.
A very general case when the 3&7" is not empty is provided by Propositipn P.2 below.
Consequently,
(2.2) u<T <+ —T(—z) <u(zr) <T(x), VrelX.
Let T’ be sublinear from a Banach spakento a Banach lattic®”. Then we have,
e T'is continuous if and only if there & > 0 such that for alk € X, ||T'(z)|| < C'||z]| .
In this case we say thdt is bounded and we put

|| = sup {IT(@)]| « |2/l =1}

We will denote bySB(X,Y) the set of all bounded sublinear operators franmto Y.

We say that a sublinear operatBiis positive if for allz in X, T'(xz) > 0; is increasing if for
all z,yin X, T(x) < T(y) whenz < y.

Also, there is no relation between positive and increasing like the linear case (a linear operator
u € L(X,Y) is positive ifu(z) > 0 for z > 0).
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We will need the following obvious properties.

Proposition 2.1. Let X be an arbitrary Banach space. L&t Z be Banach lattices.

(i) ConsiderT" in SL(X,Y) andwu in L(Y, Z). Assume that is positive. Theny o T €
SL(X,Z).
(i) Consideruin L(X,Y)andT in SL(Y,Z). ThenT ou € SL(X, Z).
(iii) ConsiderS in SL(X,Y) and T in SL(Y, Z). Assume thaf5 is increasing. Then,
SoT eSL(X,Z).

The following proposition will be used implicitly in the sequel. For its proof, $ee [1, Propo-
sition 2.3].

Proposition 2.2. Let X be a Banach space and It be a complete Banach lattice. L&te
SL(X,Y). Then, for allx in X there isu, € VT such thatl'(x) = u,(z) (i.e., the supremum
is attained,T'(x) = sup{u(z) : u € VT}).

We have thus tha¥T" is not empty ifY is a complete Banach lattice. ¥fis simply a Banach
lattice thenVT is empty in general (see [10]).

As an immediate consequence of Proposition 2.2, we have:

e the operatofl’ is bounded if and only if for all. € VT, u € B (X,Y') (the space of all
bounded linear operators).

We briefly continue by defining the notion of stronglysumming introduced by Cohenl [7]
and generalized to sublinear operators in [3].

Definition 2.2. Let X be a Banach space ant be a Banach lattice. A sublinear operator
T : X — Y is stronglyp-summing { < p < o0), if there is a positive constant such that
foranyn € N; zq,...,x, € X andy;, ...,y € Y* we have

(2.3) Z\ WO < Oy,

yEBY ?

We denote b)l)p(X, Y') the class of all strongly-summing sublinear operators frafinto
Y and byd,,(T") the smallest constant such that the inequalit.3) holds. Roe= 1, we have
Di(X,Y) =SB(X,Y).

Theorem 2.3([3]). Let X be a Banach space and be a Banach lattice. An operatdr €
SB(X,Y) is stronglyp-summing { < p < o0), if and only if, there exists a positive constant
C > 0 and a Radon probability measureon By« such that for allz € X, we have

1
« p*
g du(y**)> .

2.4) (T ()5 < C ] ( [

Moreover, in this case
d,(T) = inf {C' > 0 : for all C verifying the inequality[ (2]4).

For the definition of positive strongly-summing, we replace™ by Y andd,(T) by d,; (T').

To conclude this section, we recall the definition of posifiveumming sublinear operators,
which was first stated in the linear case by Blasca in [5]. For the definitigasaimming and
related properties, the reader can see [1].

Definition 2.3. Let X, Y be Banach lattices. L&t : X — Y be a sublinear operator. We will
say thatl is “positive p-summing” ( < p < oo) (we writeT" € 77 (X, Y)), if there exists a
positive constant’ such that for alk € N and all{x, ..., z,} C X+, we have

(2.5) (T @)l vy < C @)l x)
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We put
w1 (T) = inf {C verifying the inequality[(2]5).

p

Theorem 2.4. A sublinear operator between Banach latticésY is positivep-summing { <
p < 00), if and only if, there exists a positive constant> 0 and a Borel probability: on BY.
such that

(26) IT (@) < ¢ ( /|

X *

(v, )" du(x*>> '

for everyz € X .. Moreover, in this case
7w (T) = inf {C > 0 : for all C verifying the inequality[(2]§).

p
Proof. It is similar to the linear case (se€ [5,/12]). 0J

If T"is positivep-summing then is positivep-summing for allu € VT and by [1, Corollary
2.4], we haver (u) < 277 (T). We do not know if the converse is true.

3. COHEN p—NUCLEAR SUBLINEAR OPERATORS

We introduce the following generalization of the class of Colvniclear operators. We give
the domination theorem for such a category by using Ky Fan’s Lemma.

Definition 3.1. Let X be a Banach space and be a Banach lattice. A sublinear operator
T : X — Y is Cohenp-nuclear { < p < ), if there is a positive constaxt such that for
anyn € N, zy, ...z, € X andyj, ...,y € Y*, we have

D (T (@), u7)

i=1

(3.1)

ZZ* :

< C sup (@ (@)l sup [1(y; ()]
T*EBx* yEBy
We denote byV,,(X,Y’) the class of all Cohep-nuclear sublinear operators frafinto Y’
and byn,,(7) the smallest constaudt such that the inequalit.l) holds. For the definition of
positive Cohemnp-nuclear, we replacg™ by Y andn,(T') by n; (7).
LetT € SB(X,Y) andv : [; — Y™ be a bounded linear operator. 1.3), the sublinear
operator]’ is Cohenp-nuclear, if and only if,

n

> (T (), v(en)

i=1
Similar to the linear case, fgr = 1 andp = oo, we haveN;(X,Y) = m(X,Y) and
No(X,Y) =D (X,Y).

(3.2) <C sup ||(2"(z))

IE*GBx*

|| -

n
lp

Proposition 3.1. Let X be a Banach space and Z be two Banach lattices. Considérin
SB(X,Y), u a positive operator i3 (Y, Z) and S in B (E, X).
(i) If T'is a Coherp-nuclear sublinear operator, themo 7" is a Coherp-nuclear sublinear
operator andn,(u o T') < |lul| n,(T).
(ii) If T'is a Cohem-nuclear sublinear operator, theéhio S is a Coherp-nuclear sublinear
operator andn, (7' o S) < ||S|| n,(T).

Proof. (i) Letn € N; 4, ..., z, € X andz], ..., z; € Z*. It suffices by[(3.R) to prove that

n

S T (), )

=1

<C sup @ (@)l o

T*EBx*
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wherev : Z — [ such thaw(z) = 377", 2/ (2)e;. We have

i=1 "1

where

=~/ . u(y)
1o z<zz., »
N 2= )]
This implies that
Jw]| < [Jul] SGI}BP (25 (2))1<icn]
Yy Y

< el o]l
(i) Let n € N; ey, ...,e, € Eandyy, ...,y € Y*. We have

1
P
< n(T) sup (Zr ) ol

x *€Bxx

n

S (To5(e). )

=1

<my(T) sup [|S* (") (Z

{L‘*GBx*

<m(T)ISI] sup (Z\ew p) vl

This implies thatl" is Coherp-nuclear andu, (7 o S) < ||S]| ny(T). O

The main result of this section is the next extensionRietsch’s domination theorénfior
the class of sublinear operators. For the proof we will use the following lemma due to Ky Fan,
see([8].

Lemma 3.2. Let F be a Hausdorff topological vector space, and(ebe a compact convex
subset ofE. Let M be a set of functions ofi with values in(—oo, co] having the following
properties:

(a) eachf € M is convex and lower semicontinuous;
(b) if g € conv(M), there is anf € M with g(x) < f(x), for everyx € C;
(c) there is anr € R such that eaclf € M has a value not greater than

Then there is an, € C such thatf(z¢) < rforall f € M.
We now give the domination theorem by using the above lemma.

Theorem 3.3. Let X be a Banach space and be a Banach lattice. Considét € SB(X,Y)
and( a positive constant.

(1) The operatofl” is Cohenp-nuclear andn, (7)) < C.
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(2) ForanyninN, z4,...,x, in X andyj, ...,y in Y* we have

ZI WM <O sup @ (@)l sup (17 @)y, -

r*EBx* yeEBy

(3) There eX|st Radon probability measupeson By« and u, on By, such that for all
r € X andy* € Y*, we have

63 1@ <o ([ erane) ([ el anen)”
Moreover, in this case

n,(T) = inf {C' > 0 : for all C verifying the inequality| (3]3).
Proof. (1)=(2). LetT be inN,, (X,Y) and(};) be a scalar sequence. We have

ZA

Taking the supremum over all sequen¢gg with ||(\;)[|,_ < 1, we obtain

Y < np(T)sup [[(A)lly, [l (@)l x) Sup 1€ i, -
ycby

ZI Y| < () [[(@0) o ) sup [|(57 (y))

l’"/* .
yEBy P

To prove that (2) |mpI|es (3We consider the sef3( Bx+) andP(By-~) of probability measures
in C'(Bx~)* andC(By~)*, respectively. These are convex sets which are compact when we
endowC'(Bx~)* andC(By+«)* with their weak topologies. We are going to apply Ky Fan’s
Lemma withE = C(Bx«)* x C(By+)* andC = P(Bx+) X P(By+).

Consider the set/ of all functionsf : C — R of the form

BA) f(w (ur)) (s p2) - Z\ (z:),y7)| = C ( Z/B | (2) [P dpa (z7)
+—Z A% )" d (y**)>,

wherez,, ...,x, € X andy;, ...,y € Y*.
These functions are convex and continuous. We now apply Ky Fan’s Lemma (the conditions
(@) and (b) of Ky Fan’s Lemma are satisfied). lfey be in M anda € [0, 1] such that

Z/ " dpur ()
+ piz_:/B [y ™) duz(y**)] :

F((a). () (1125 12) = Z (T(z)),y

l

9((ar). (o)) (s 12) = Y WT (), ")

i=k+1

o Z [(yi™ y™) (y**)] :

i=k+1
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It follows that
k

ST (), b (ZL VP dpn ()

i=1

af =«

OépI .Z'

(3 /K
+%g/y** ‘<O‘ y’y> " duz(y**)>
- f((a;x;)(w* y;*)) (h1, ),

ftg=2> [T@).y) ( Z/B ) dp ()
+ piz_:/B [y, )" dpa(y >+ > UT @), )

i=k+1

-C (% >, /B (2, 2") " dpa (2 +— Z (i v (y**)>

i=k+1 X i=k+1

= TG u + 3 T u)] (ZL s}y )

withn =k +1,
o, if 1<i<k,
xIr; = .
ol if k4+1<i<lI
and
. yroif 1 <i <k,
Y, = .
y o if k+1<i<lI.

For the condition (c), sinc&y- and By« are weak compact and norming sets, there exist for
f € M two elementsg € Bx- andy, € By« such that

n

sup E (xi,x g [{zs, x5)|”

T*EBx* i=1
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and

Z| ymyo

sup |[(y; (y
yEBy

Using the elementary identity

QNP

1 .
(3.5) Vo, B €R, aff = 1nf{p (-) + = (eB) }

taking

= sup <Z| Ti, X ) ’ p= s 1wiw) L

ande = 1, then

C - . C .
(s, 50 z| m——(sup zuxi,xw)——*supu<y@-<y>>,*
p T - P yeBy

< ZI(T(%),yZ‘)I —C< sup Zl(l’ux*ﬂ”)p sup {|(y; (W), -

T*EByx* i=1 yEBy

The last quantity is less than or equal to zero (by hypothesis (2)) and hence condition (c) is
verified by taking- = 0. By Ky Fan’s Lemma, there i§:y, o) € C with f (1, p9) < 0 for all
f € M. Then, if f is generated by the single elements X andy* € Y*,

C C

!@@WWS—L mﬁwwmﬂ+gé " 5™ P dpaaly™).

p

: . 1 : - .
Fix e > 0. Replacingr by —z, andy* by ey* and taking the infimum over adl > 0 (using the
€
elementary identity] (3]5)), we find

% (/BX [z, 2 dul(ﬂ)yr
6 (/By "y duz(y**)) ”1*] p* }
<cC (/BX |<$,x*>|pdu1(m*)); ( /B P %(y**)) .

To prove that (3}=(1), letz4, ..., z,, € X andy;, ..., y: € Y*. We have by[(3]3)

WWM&MSC<éﬂm®WWmW0%(LWM@WWWMWO%
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forall 1 <i < n. Thus we obtain by using Hoélder’s inequality

Zn: T (z:),y5) <Z| )
<CZ(/B P dta >)%’( / |y:<y**>|p*du2<y**>>’%

<C (B Z!fﬂz )" dpn ( ) (Z/B [y ( **!pdu(**)>p

1
p
<C sup (Z‘%(x*)‘p) SEqu H(:y:(y>)1§z§nHln
yeby p

1=1
This implies thaf” € NV, (X,Y) andn,(T") < C and this concludes the proof. O
4. RELATIONSHIPS BETWEEN 7,(X,Y), D,(X,Y) AND N,(X,Y)

In this section we investigate the relationships between the various classes of sublinear oper-

ators discussed in Sectiph 2 drjd 4. We also give a relation betiveenl V1" concerning the
notion of Coherp-nuclear.

Theorem 4.1.Let X be a Banach space and be a Banach lattice. We have:
1) N(X Y) CD,(X,Y)andd,(T) < n,(T).
(2) N,(X,Y) C 7Tp(X Y) andwp( ) < ny(T).

Proof. (1) LetT € N,(X,Y). Letz € X andy* € Y*. We have by[(3]3)

(el <mr) ([ u*(wﬂ%(x*))% ([ wor dm**))’%"

1
« p*
<ny(T) sup |a*(2)] ( / 1y ()P duz(y**))
SC*EBx* BY**

<yl ([ W du2<y**>)’%

(T (2) 57| < my(T) ] ( [ duz(y**))

Then, by Theorer 23} is stronglyp-summing andi,(T) < n,(T).
(2) LetT be an operator iV, (X,Y)

IT(z)| = sup [T (),y")]

y*EBy*

< o (1) ( /BX* o (2)I" dﬂﬂx*)) ( /B . ™ ()" duz(y**)> g

< ny(T) ( / . rx*<x>rpdm<x*>)’l’ sup "]

Yy*EBy*

SO
L
p*

SR
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Then

p
17 ()| < ny(T) (/B \w*(x)lpdul(x*))
and by Theorerh 2147 is p-summing andr,(T) < n,(T'). The proof is complete. O

Theorem 4.2.Let X be Banach space arid Z be two Banach lattices. Lét< p < oo.

(1) LetT € SB(X,Y)and L € SB(Y, Z). Assume thaL is increasing. IfL is a strongly
p-summing sublinear operator, aridis a p-summing sublinear operator, theno T'is
a Cohernp-nuclear sublinear operator and,(L o T') < d,(L)m,(T).

(2) Consideruin B(Z, X) ap-summing operator andl in SB(X, Y') a stronglyp-summing
one. Then] o u is a Coherp-nuclear sublinear operator and,(7 o u) < d,(T")m,(u).

(3) Considerl"in SB(X,Y) ap-summing operator andin B(Y, Z) a stronglyp-summing
one. Assume thatis positive. Theny o T" is a Coherp-nuclear sublinear operator and
np(voT) < dy(v)my(T).

Proof. (1) The operatol o T is sublinear by Propositidn 2.1(iii). Lete X andz* € Z*. By
Theorenj 2.3, we have

[(LoT(x),27)| = [(L(T(z)),2")|

1
* p*
< d(L) |T ()] ( /B ()P dA(z**>)
and by Theorerp 2|4

<awm @ ( [ e dn(x*>>% (/ e

(LoT (0),2)] < dm () ( [ Gl du(w*))% (f e dA<z**>)’%.

This implies that. o 7' € N,(X,Y) andn,(L o T') < d,(L)m,(T).
(2) Follows immediately by using Propositipn 2.1(ii), Theoifenj 2.3 and Theprgm 2.4.
(3) The operatop o T'is sublinear by Propositign 2.1(i). Lettinge X andz* € Z*, we have
[(w(T (x)), 27)] = (T (), v* ("))
<17 ()] lv* (")l
becausey is stronglyp—summing iffv* is p*—summing andl,(v) = m,-(v*) (see[[7, Theorem
2.2.1 part(ii)]), so

17 ()] o™ (=)l

1
p*

p dA(Z**)> |

SO

1
p*

<40 7@ ( [ e ™))

< 7 (T)dy(0) ( / |x*<:c>|pdm<x*>) ' ( [ e dua(Z**))
This implies that o T € N,(X, Z) andn,(v o T) < d,(v)m,(T). O

We now present an example of Cohgnuclear sublinear operators.
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Example 4.1.Let1 < p < oo andn, N € N. Letu be a linear operator fror§ into l;)V such
thatS(z) = |u (z)|. Letv be alinear operator fromh, (1) (1 < g < o) intoly. ThenT = Sow
is a Cohere-nuclear sublinear operator.

Proof. Indeed,S () = |u (x)] is a strongly2-summing sublinear operator by [3], and by [7,
Lemma 3.2.2]p is 2-summing. Then by Theoreim 4.2 part (2)= S o v is a Coher2-nuclear
sublinear operator. O

Proposition 4.3. Let X be a Banach lattice and be a complete Banach lattice. L&tbe
a bounded sublinear operator frol into Y. Suppose thaf’ is positive Cohem-nuclear
(1 <p < o0). ThenforallS € SB(X,Y) such thatS < T, S is positive Cohep-nuclear.

Proof. Lettingz; € X, andy; € Y7, by (1.2), we have
and consequently, by (2.2),

forall 1 <i <n. This implies that

Z! ), Y \<Zsup{ v (T(—x),97)}

<Zsup{\ z), y) |, [(T(=x), y) [}

<Z| yZ|+ZI

and hence

n

DS,y < 20 (T) sup |2 (@)l sup [|(y; (%),

i—1 T*EBx* yEB

Thus the operataf is positive Cohemp-nuclear andi,) (S) < 2n./ (7). O
Remark 1. If S, T are any sublinear operators, we have no answer.

Corollary 4.4. If T is positive Cohep-nuclear (| < p < o), thenforallu € VT, u is positive
Cohenp-nuclear and consequently is positivep*-summing.

Proof. Let T be a positive Cohep-nuclear sublinear operator. Then for alle VT, u is
positive Cohem-nuclear (replacing by « in Propositionj 4.B). If: is positive Cohemp-nuclear
(by Theorenj 4]1y is positive stronglyp-summing), then.* is p*-summing (se€ |7, Theorem
2.2.1 part(ii)]). OJ

We now study the converse of the preceding corollary with some conditions.

Theorem 4.5.Let X be Banach space anid be a complete Banach lattice. LEt: X — Y be
a sublinear operator. Suppose that there is a constant 0, a set/, an ultrafilterZ/ on I and
{u; }ier € VT such that for allz in X andy* in Y*,

i (2) .y —= (T () .y
andn,(u;) < C uniformly. ThenT" € N,(X,Y) andn,(T) < C.
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Proof. Sincew; is Cohenp-nuclear, by Theorer 3.3 there is a Radon probability measure
(i, v;) on K = Bx+ x By such that for al: € X andy* in Y*, we have
1

s < ) [ e <w*>\Pdui)’l’ (/ W )"

As we have for all: in X and y* € Y™,

i (), y") —= (T (), )]

thus we obtain that for alt in X and y* € Y*,

T @)} <ty ([ o) w) ([ i) g

The setK = By« x By is weakK compact, hencéu,, v;) converge weakto a probability
(u,v) on K = By« X By« and consequently, for allin X and y* € Y*

*

1

reae(f P dﬂ); (/ el )"

This implies that,(7) < C. O
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