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ABSTRACT. Our aim is to prove the inequalities

1− x2

n(n + 1)
hn ≤

Pn(x) Pn+1(x)
Pn−1(x) Pn(x) ≤ 1− x2

2
, ∀x ∈ [−1, 1], n = 1, 2, . . . ,

wherehn :=
∑n

k=1
1
k and(Pn)∞n=0 are the Legendre polynomials . At the same time, it is shown

that the sequence having as general term

n(n + 1)
Pn(x) Pn+1(x)
Pn−1(x) Pn(x)

is non-decreasing forx ∈ [−1, 1].
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1. I NTRODUCTION

Let (Pn)∞n=0 be the sequence of Legendre polynomials, that is

Pn(x) =
1

n!2n

(
(x2 − 1)n

)(n)
= 2F1

(
−n, n + 1; 1;

1− x

2

)
,

where

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)k

· zk

k!
,

(a)k := a(a + 1) · · · (a + k − 1), (a)0 = 1.
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Denote

∆n(x) :=
Pn(x) Pn+1(x)

Pn−1(x) Pn(x)
= [Pn(x)]2 − Pn−1(x)Pn+1(x).

Note thatPn(1) = 1, Pn(−x) = (−1)nPn(−x), i.e. ∆n(1) = ∆n(−1) = 0. For instance

∆1(x) =
1− x2

2
, ∆2(x) =

1− x4

4
.

Paul Turán [3] has proved the following interesting inequality

(1.1) ∆n(x) > 0, ∀x ∈ (−1, 1), n ∈ {1, 2, . . . }.
In [1] – [2] are given the following remarkable representations of∆n(x).

Lemma 1.1(A. Lupaş). Supposeϕ(x, t) := x2 + t(1− x2) andPn(xk) = 0. Then

(1.2) ∆n(x) =
1

πn(n + 1)

∫ 1

−1

1− Pn (ϕ(x, t))

1− t
· dt√

1− t2

and

(1.3) ∆n(x) =
1− x2

n(n + 1)

n∑
k=1

(
Pn(x)

x− xk

)2

(1− xxk) .

2. M AIN RESULTS

In this article our aim is to improve the Turán inequality (1.1).

Theorem 2.1. If x ∈ [−1, 1], n ∈ N, hn :=
∑n

k=1
1
k
, then

(2.1)
1− x2

n(n + 1)
hn ≤ ∆n(x) ≤ 1− x2

2
.

Proof. Let us denoteTk(t) = cos (k · arccos t), γ0 = 1
π
, γk = 2

π
for k ≥ 1, andϕ(x, t) =

x2 + t(1− x2). According to addition formula for Legendre polynomials, we have

Pn(ϕ(x, t)) = π
n∑

k=0

(n− k)!

(n + k)!
(1− x2)k

[
P (k)

n (x)
]2

γkTk(t).

If t = 1 we find

1 = π
n∑

k=0

(n− k)!

(n + k)!
(1− x2)k

[
P (k)

n (x)
]2

γk.

Therefore

1− Pn (ϕ(x, t))

1− t
= 2

n∑
k=1

(n− k)!

(n + k)!
(1− x2)k

[
P (k)

n (x)
]2 1− Tk(t)

1− t

= 2π
n∑

k=1

(n− k)!

(n + k)!
(1− x2)k

[
P (k)

n (x)
]2

k∑
ν=0

(k − ν)γνTν(t).

This shows us that

max
t∈[−1,1]

{
1− Pn (ϕ(x, t))

1− t

}
=

1− Pn (ϕ(x, t))

1− t

∣∣∣∣
t=1

= (1− x2)P ′
n(1) =

n(n + 1)

2
(1− x2).
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TURÁN INEQUALITY 3

Using the Lupaş identity (1.2) we obtain

∆n(x) ≤ 1− x2

2
, (n ≥ 1, x ∈ [−1, 1]).

Taking into account the following well-known equalities

Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x), P0(x) = 1, P1(x) = x,

(1− x2)P ′
n(x) = n (Pn−1(x)− xPn(x)) = (n + 1) (xPn(x)− Pn+1(x)) ,

we obtain

k(k + 1)∆k(x)− (k − 1)k∆k−1(x) = (1− x2)
[
P ′

k(x)Pk−1(x)− Pk(x)P ′
k−1(x)

]
.

The Christofell-Darboux formula for Legendre polynomials enables us to write

k(k + 1)∆k(x)− (k − 1)k∆k−1(x) =
1− x2

k

k−1∑
j=0

(2j + 1) [Pj(x)]2 , k ≥ 2.

By summing fork ∈ {2, 3, . . . , n} we give

n(n + 1)∆n(x) = (1− x2)hn + (1− x2)
n−1∑
k=1

1

k + 1

k∑
j=1

(2j + 1) [Pj(x)]2 ,

which implies∆n(x) ≥ (1−x2)hn

n(n+1)
for x ∈ [−1, 1]. �

Another remark regarding∆n(x) is the following :

Theorem 2.2.The sequence(n(n + 1)∆n(x))∞n=1 , x ∈ [−1, 1], is non-decreasing, i.e.

∆n(x) ≥ n− 1

n + 1
∆n−1(x), x ∈ [−1, 1], n ≥ 2.

Proof. Let Πm be the linear space of all polynomials, of degree≤ m, having real coeffi-
cients. Using a Lagrange-Hermite interpolation formula, every polynomialf from Π2n+1 with
f(−1) = f(1) = 0 may be written as

(2.2) f(x) = (1− x2)
n∑

k=1

(
Pn(x)

P ′
n(xk)(x− xk)

)2

Ak(f ; x),

where

Ak(f ; x) =
f(xk) + (x− xk)f

′(xk)

1− x2
k

.

Let us observe that

Pn−1(xk) =
1− x2

k

n
P ′

n(xk), Pn+1(xk) = −1− x2
k

n + 1
P ′

n(xk),

Pn−2(xk) =
2n− 1

n(n− 1)
xk(1− x2

k)P
′
n(xk),(2.3)

P ′
n−1(xk) = P ′

n+1(xk) = xkP
′
n(xk).

In (2.2) let us considerf ∈ Π2n, where

f(x) = n(n + 1)∆n(x)− n(n− 1)∆n−1(x).

From (2.3) we find

f(xk) =
(1− x2

k)
2

n
[P ′

n(xk)]
2
, f ′(xk) = 0.
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BecauseAk(f ; x) =
1−x2

k

n
[P ′

n(xk)]
2 , using (2.2) we give

f(x) =
1− x2

n

n∑
k=1

(
Pn(x)

x− xk

)2

(1− x2
k) ≥ 0, x ∈ [−1, 1].

Therefore
(n + 1)∆n(x)− (n− 1)∆n−1(x) ≥ 0 for x ∈ [−1, 1].

�
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