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Abstract: In the paper "Notes on an integral inequality" published inJ. Inequal. Pure &
Appl. Math., 7(4) (2006), Art. 120, an open question was posed. In this short
paper, we give the solution and we generalize the results of the mentioned paper.
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1. Introduction

The following open question was proposed in the paper [1]:
Under what conditions does the inequality

(1.1)
∫ 1

0

fα+β (x) dx ≥
∫ 1

0

xβfα (x) dx

hold forα andβ?
In the above paper, the authors established some integral inequalities and derived

their results using an analytic approach.
In the present paper, we give a solution and further generalization of the integral

inequalities presented in [1].
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2. The Answer to the Posed Question

Throughout this paper, we suppose thatf (x) is a continuous and nonnegative func-
tion on[0, 1] .

In [1]], the following lemma was proved.

Lemma 2.1. If f satisfies

(2.1)
∫ 1

x

f (t) dt ≥ 1− x2

2
, ∀x ∈ [0, 1] ,

then

(2.2)
∫ 1

0

xα+1f (x) dx ≥ 1

α + 3
, ∀α > 0.

Theorem 2.2. If the functionf satisfies (2.1), then the inequality

(2.3)
∫ 1

0

xβfα (x) dx ≥ 1

α + β + 1

holds for every realα ≥ 1 andβ > 0.

Proof. Applying the AG inequality, we get

(2.4)
1

α
fα (x) +

α− 1

α
xα ≥ f (x) xα−1.

Multiplying both sides of(2.4) by xβ and integrating the resultant inequality from 0
to 1, we obtain

(2.5)
∫ 1

0

xβfα (x) dx +
α− 1

α + β + 1
≥ α

∫ 1

0

xα+β−1f (x) dx.
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Taking into account Lemma2.1, we have∫ 1

0

xβfα (x) dx +
α− 1

α + β + 1
≥ α

α + β + 1
.

That is, ∫ 1

0

xβfα (x) dx ≥ 1

α + β + 1
.

This completes the proof.

Theorem 2.3. If the functionf satisfies (2.1), then

(2.6)
∫ 1

0

fα+β (x) dx ≥
∫ 1

0

xβfα (x) dx

for every real α ≥ 1 andβ > 0.

Proof. Using the AG inequality, we obtain

(2.7)
α

α + β
fα+β (x) +

β

α + β
xα+β ≥ xβfα (x) .

Integrating both sides of(2.7), we get

(2.8)
α

α + β

∫ 1

0

fα+β (x) dx +
β

(α + β)(α + β + 1)
≥

∫ 1

0

xβfα (x) dx.

From ∫ 1

0

xβfα (x) dx =
α

α + β

∫ 1

0

xβfα (x) dx +
β

α + β

∫ 1

0

xβfα (x) dx
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and by virtue of Theorem2.3, it follows that

(2.9)
∫ 1

0

xβfα (x) dx ≥ α

α + β

∫ 1

0

xβfα (x) dx +
β

(α + β)(α + β + 1)
.

From this inequality and using(2.8) we have,

α

α + β

∫ 1

0

fα+β (x) dx ≥ α

α + β

∫ 1

0

xβfα (x) dx.

Thus (2.6) is proved.
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