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ABSTRACT. In this paper, the relations between the weighted partial orderings on the set of rect-
angular complex matrices are first studied. Then, using the matrix function defined by Yang and
Li [H. Yang and H.Y. LI, WeightedUDV ∗-decomposition and weighted spectral decomposition
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some weighted partial orderings of matrices are compared with the orderings of their functions.
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1. I NTRODUCTION

Let Cm×n denote the set ofm × n complex matrices,Cm×n
r denote a subset ofCm×n com-

prising matrices with rankr, Cm
≥ denote a set of Hermitian positive semidefinite matrices of

orderm, andCm
> denote a subset ofCm

≥ consisting of positive definite matrices. LetIr be the
identity matrix of orderr. GivenA ∈ Cm×n, the symbolsA∗, A#

MN , R(A), andr(A) stand
for the conjugate transpose, weighted conjugate transpose, range, and rank, respectively, ofA.
Details for the concept ofA#

MN can be found in [11, 13]. Moreover, unless otherwise specified,
in this paper we always assume that the given weight matricesM ∈ Cm×m andN ∈ Cn×n.

In the following, we give some definitions of matrix partial orderings.

Definition 1.1. ForA, B ∈ Cm×m, we say thatA is belowB with respect to:
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2 HANYU L I , HU YANG, AND HUA SHAO

(1) theLöwner partial orderingand writeA ≤L B, wheneverB − A ∈ Cm
≥ .

(2) theweighted Löwner partial orderingand writeA ≤WL B, wheneverM(B−A) ∈ Cm
≥ .

Definition 1.2. ForA, B ∈ Cm×n, we say thatA is belowB with respect to:

(1) thestar partial orderingand writeA
∗
≤ B, wheneverA∗A = A∗B andAA∗ = BA∗.

(2) theweighted star partial orderingand writeA
#

≤ B, wheneverA#
MNA = A#

MNB and
AA#

MN = BA#
MN .

(3) the WG-weighted star partial orderingand writeA
#

≤WG B, wheneverMAB#
MN ∈

Cm
≥ , NA#

MNB ∈ Cn
≥, andAA#

MN ≤WL AB#
MN .

(4) theWGL partial orderingand writeA ≤WGL B, whenever(AA#
MN)1/2 ≤WL (BB#

MN)1/2

andAB#
MN = (AA#

MN)1/2(BB#
MN)1/2.

(5) the WGL2 partial ordering and writeA ≤WGL2 B, wheneverAA#
MN ≤WL BB#

MN

andAB#
MN = (AA#

MN)1/2(BB#
MN)1/2.

(6) theminus partial orderingand writeA
−
≤ B, wheneverA−A = A−B andAA= = BA=

for some (possibly distinct) generalized inversesA−, A= of A (satisfyingAA−A = A =
AA=A).

The weighted Löwner and weighted star partial orderings can be found in [6, 15] and [9],
respectively. TheWGL partial ordering was defined by Yang and Li in [15] and theWGL2
partial ordering can be defined similarly. The minus partial ordering was introduced by Hartwig
[2], who also showed that the minus partial ordering is equivalent to rank subtractivity, namely

A
−
≤B if and only if r(B − A) = r(B)− r(A). For the relation

#

≤WG, we can use Lemma 2.5
introduced below to verify that it is indeed a matrix partial ordering according to the three laws
of matrix partial orderings.

Baksalary and Pukelsheim showed how the partial orderings of two Hermitian positive semi-
definite matricesA andB relate to the orderings of their squaresA2 andB2 in the sense of the
Löwner partial ordering, minus partial ordering, and star partial ordering in [1]. In terms of these
steps, Hauke and Markiewicz [3] discussed how the partial orderings of two rectangular matri-
cesA andB relate to the orderings of their generalized squareA(2) andB(2), A(2) = A(A∗A)1/2,
in the sense of theGL partial ordering, minus partial ordering,G-star partial ordering, and star
partial ordering. The definitions of theGL andG-star partial orderings can be found in [3, 4].

In addition, Hauke and Markiewicz [5] also compared the star partial orderingA
∗
≤ B, G-star

partial orderingA
∗
≤G B, andGL partial orderingA ≤GL B with the orderingsf(A)

∗
≤ f(B),

f(A)
∗
≤G f(B), andf(A) ≤GL f(B), respectively. Here,f(A) is a matrix function defined

in A [7]. Legiša [8] also discussed the star partial ordering and surjective mappings onCn×n.
These results extended the work of Mathias [10] to some extent, who studied the relations
between the Löwner partial orderingA ≤L B and the orderingf(A) ≤L f(B).

In the present paper, based on the definitionA(2) = A(A#
MNA)1/2 (also called the generalized

square ofA), we study how the partial orderings of two rectangular matricesA andB relate
to the orderings of their generalized squaresA(2) andB(2) in the sense of theWGL partial or-
dering,WG-weighted star partial ordering, weighted star partial ordering, and minus partial or-
dering. Further, adopting the matrix functions presented in [14], we also compare the weighted

partial orderingsA
#

≤ B, A
#

≤WG B, andA ≤WGL B with the orderingsf(A)
#

≤ f(B),

f(A)
#

≤WG f(B), andf(A) ≤WGL f(B), respectively. These works generalize the results of
Hauke and Markiewicz [3, 5].
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WEIGHTED PARTIAL ORDERINGS 3

Now we introduce the(M, N) weighted singular value decomposition [11, 12] (MN-SVD)
and the matrix functions based on the MN-SVD, which are useful in this paper,

Lemma 1.1. Let A ∈ Cm×n
r . Then there existU ∈ Cm×m andV ∈ Cn×n satisfyingU∗MU =

Im andV ∗N−1V = In such that

(1.1) A = U

(
D 0
0 0

)
V ∗,

whereD = diag(σ1, . . . , σr), σi =
√

λi > 0, and λ1 ≥ · · · ≥ λr > 0 are the nonzero
eigenvalues ofA#

MNA = (N−1A∗M)A. Here, σ1 ≥ · · · ≥ σr > 0 are called the nonzero
(M, N) weighted singular values ofA. If, in addition, we letU = (U1, U2) andV = (V1, V2),
whereU1 ∈ Cm×r andV1 ∈ Cn×r, then

(1.2) U∗
1 MU1 = V ∗

1 N−1V1 = Ir, A = U1DV ∗
1 .

Considering the MN-SVD, from [14], we can rewrite the matrix functionf(A) : Cm×n →
Cm×n by way of f(A) = U1f(D)V ∗

1 using the real functionf , wheref(D) is the diagonal
matrix with diagonal elementsf(σ1), . . . , f(σr). More information on the matrix function can
be found in [14].

2. RELATIONS BETWEEN THE WEIGHTED PARTIAL ORDERINGS

Firstly, it is easy to obtain that on the cone of generalized Hermitian positive semidefinite
matrices (namely the cone comprising all matrixes which multiplied by a given Hermitian posi-
tive definite matrix become Hermitian positive semidefinite matrices) theWGL partial ordering
coincides with the weighted Löwner partial ordering, i.e., for matricesA, B ∈ Cm×m satisfying
MA,MB ∈ Cm

≥ ,
A ≤WGL B if and only if A ≤WL B

and theWGL2 partial ordering coincides with theWGL partial ordering of the squares of
matrices, i.e., for matricesA, B ∈ Cmm satisfyingMA,MB ∈ Cm

≥ ,

A ≤WGL2 B if and only if A2 ≤WGL B2.

On the set of rectangular matrices, for the generalized square ofA, i.e.,A(2) = A(A#
MNA)1/2,

the above relation takes the form:

(2.1) A ≤WGL2 B if and only if A(2) ≤WGL B(2),

which will be proved in the following theorem.

Theorem 2.1.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then (2.1) holds.

Proof. It is easy to find that the first conditions in the definitions ofWGL2 partial ordering for
A andB andWGL partial ordering forA(2) andB(2) are equivalent. To prove the equivalence
of the second conditions, let us use the MN-SVD introduced in Lemma 1.1.

Let A = U1DaV
∗
1 andB = U2DbV

∗
2 be the MN-SVDs ofA andB, whereU1 ∈ Cm×a,

U2 ∈ Cm×b, V1 ∈ Cn×a, andV2 ∈ Cn×b satisfyingU∗
1 MU1 = V ∗

1 N−1V1 = Ia andU∗
2 MU2 =

V ∗
2 N−1V2 = Ib, andDa ∈ Ca

>, Db ∈ Cb
> are diagonal matrices. Then

AB#
MN =(AA#

MN)1/2(BB#
MN)1/2

⇔ U1DaV
∗
1 N−1V2DbU

∗
2 M

= (U1DaV
∗
1 N−1V1DaU

∗
1 M)1/2(U2DbV

∗
2 N−1V2DbU

∗
2 M)1/2

⇔ U1DaV
∗
1 N−1V2DbU

∗
2 M = U1DaU

∗
1 MU2DbU

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2.(2.2)
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Note that

A(2) = A(A#
MNA)1/2 = U1DaV

∗
1 (N−1V1DaU

∗
1 MU1DaV

∗
1 )1/2(2.3)

= U1DaV
∗
1 N−1V1DaV

∗
1 = U1D

2
aV

∗
1 .

Similarly,

(2.4) B(2) = U2D
2
bV

∗
2 .

Then

A(2)(B(2))#
MN =(A(2)(A(2))#

MN)1/2(B(2)(B(2))#
MN)1/2

⇔ U1D
2
aV

∗
1 N−1V2D

2
bU

∗
2 M

= (U1D
2
aV

∗
1 N−1V1D

2
aU

∗
1 M)1/2(U2D

2
bV

∗
2 N−1V2D

2
bU

∗
2 M)1/2

⇔ U1D
2
aV

∗
1 N−1V2D

2
bU

∗
2 M = U1D

2
aU

∗
1 MU2D

2
bU

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2,

which together with (2.2) gives

AB#
MN = (AA#

MN)1/2(BB#
MN)1/2

⇔ A(2)(B(2))#
MN = (A(2)(A(2))#

MN)1/2(B(2)(B(2))#
MN)1/2.

Therefore, the proof is completed. �

Before studying the relation between theWGL partial orderings forA andB and that for
their generalized squares, we first introduce a lemma from [1].

Lemma 2.2. LetA, B ∈ Cm
≥ . Then

(a) If A2 ≤L B2, then A ≤L B.
(b) If AB = BA and A ≤L B, then A2 ≤L B2.

Theorem 2.3.LetA, B ∈ Cm×n, r(A) = a, r(B) = b, and

(a) A ≤WGL B,
(b) A(2) ≤WGL B(2),

(c) (AB#
MN)#

MM = AB#
MN .

Then(b) implies(a), and(a) and(c) imply (b).

Proof. (i). (b) ⇒ (a).
Together with Theorem 2.1 and the definitions ofWGL2 and WGL partial orderings, it

suffices to show that

(2.5) (A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2 ⇒ (AA#
MN)1/2 ≤WL (BB#

MN)1/2.

From the proof of Theorem 2.1 and the definition of weighted Löwner partial ordering, we have

(A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2(2.6)

⇔ U1D
2
aU

∗
1 M ≤WL U2D

2
bU

∗
2 M

⇔ MU1D
2
aU

∗
1 M ≤L MU2D

2
bU

∗
2 M

⇔ M1/2U1D
2
aU

∗
1 M1/2 ≤L M1/2U2D

2
bU

∗
2 M1/2

⇔ M1/2U1DaU
∗
1 M1/2M1/2U1DaU

∗
1 M1/2

≤L M1/2U2DbU
∗
2 M1/2M1/2U2DbU

∗
2 M1/2.
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WEIGHTED PARTIAL ORDERINGS 5

Applying Lemma 2.2 (a) to (2.6) leads to

M1/2U1DaU
∗
1 M1/2 ≤L M1/2U2DbU

∗
2 M1/2(2.7)

⇔ MU1DaU
∗
1 M ≤L MU2DbU

∗
2 M

⇔ M(AA#
MN)1/2 ≤L M(BB#

MN)1/2

⇔ (AA#
MN)1/2 ≤WL (BB#

MN)1/2.

Then, by (2.6) and (2.7), we show that (2.5) holds.

(ii). (a) and(c) ⇒ (b).
Similarly, combining with Theorem 2.1 and the definitions ofWGL2 andWGL partial or-

derings, we only need to prove that

(2.8) (AA#
MN)1/2 ≤WL (BB#

MN)1/2 ⇒ (A(2)(A(2))#
MN)1/2 ≤WL (B(2)(B(2))#

MN)1/2.

From the proof of Theorem 2.1 and the definition of weighted Löwner partial orderings, we
have

(AA#
MN)1/2 ≤WL(BB#

MN)1/2(2.9)

⇔ U1DaU
∗
1 M ≤WL U2DbU

∗
2 M

⇔ MU1DaU
∗
1 M ≤L MU2DbU

∗
2 M

⇔ M1/2U1DaU
∗
1 M1/2 ≤L M1/2U2DbU

∗
2 M1/2.

According to (c), we have

(2.10) U2DbV
∗
2 N−1V1DaU

∗
1 M = U1DaV

∗
1 N−1V2DbU

∗
2 M.

Thus, together with (2.10) and (2.2), we can obtain

(2.11) U2DbU
∗
2 MU1DaU

∗
1 M = U1DaU

∗
1 MU2DbU

∗
2 M

⇔ M1/2U1DaU
∗
1 M1/2M1/2U2DbU

∗
2 M1/2

= M1/2U2DbU
∗
2 M1/2M1/2U1DaU

∗
1 M1/2.

Applying Lemma 2.2 (b) to (2.11) and (2.9), we have

(2.12) M1/2U1DaU
∗
1 M1/2M1/2U1DaU

∗
1 M1/2 ≤L M1/2U2DbU

∗
2 M1/2M1/2U2DbU

∗
2 M1/2.

Then, combining with (2.12) and (2.6), we can show that (2.8) holds. �

The weighted star partial ordering was characterized by Liu in [9], using the simultaneous
weighted singular value decomposition of matrices [9]. He obtained the following result.

Lemma 2.4. Let A, B ∈ Cm×n andr(B) = b > r(A) = a ≥ 1. ThenA
#

≤ B if and only if
there exist matricesU ∈ Cm×m andV ∈ Cn×n satisfyingU∗MU = Im andV ∗N−1V = In

such that

A = U

(
Da 0
0 0

)
V ∗ = U1DaV

∗
1 ,

B = U

 Da 0 0
0 D 0
0 0 0

 V ∗ = U2

(
Da 0
0 D

)
V ∗

2 ,

whereU1 ∈ Cm×a, V1 ∈ Cn×a andU2 ∈ Cm×b, V2 ∈ Cn×b denote the firsta andb columns of
U ,V , respectively, and satisfyU∗

1 MU1 = V ∗
1 N−1V1 = Ia andU∗

2 MU2 = V ∗
2 N−1V2 = Ib, and

Da ∈ Ca
> andD ∈ Cb−a

> are diagonal matrices.
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Similarly to Lemma 2.4, we can take the following form to characterize theWG-weighted
star partial ordering. A detailed proof is omitted.

Lemma 2.5. Let A, B ∈ Cm×n andr(B) = b > r(A) = a ≥ 1. ThenA
#

≤WG B if and only
if there exist matricesU ∈ Cm×m andV ∈ Cn×n satisfyingU∗MU = Im andV ∗N−1V = In

such that

A = U

(
Da 0
0 0

)
V ∗ = U1DaV

∗
1 ,

B = U

 Da′ 0 0
0 D 0
0 0 0

 V ∗ = U2

(
Da′ 0
0 D

)
V ∗

2 ,

whereU1 ∈ Cm×a, V1 ∈ Cn×a andU2 ∈ Cm×b, V2 ∈ Cn×b denote the firsta andb columns of
U ,V , respectively, and satisfyU∗

1 MU1 = V ∗
1 N−1V1 = Ia andU∗

2 MU2 = V ∗
2 N−1V2 = Ib, and

Da, Da′ ∈ Ca
> andD ∈ Cb−a

> are diagonal matrices, andDa′ −Da ∈ Ca
≥.

From the simultaneous weighted singular value decomposition of matrices [9], Lemma 2.4,
and Lemma 2.5, we can derive the following theorem.

Theorem 2.6.LetA, B ∈ Cm×n. Then

(a) A
#

≤ B ⇔ MAB#
MN ∈ Cm

≥ , NA#
MNB ∈ Cn

≥, andAA#
MN = (AA#

MN)1/2(BB#
MN)1/2.

(b) A
#

≤WG B ⇔ MAB#
MN ∈ Cm

≥ , NA#
MNB ∈ Cn

≥, and(AA#
MN)1/2 ≤WL (BB#

MN)1/2.

Considering Definition 1.2(4) and Theorem 2.6, we can present the following relations be-
tween three weighted partial orderings by the sequence of implications:

A
#

≤ B ⇒ A
#

≤WG B ⇒ A ≤WGL B.

As in Theorem 2.3, we now discuss the corresponding result forWG-weighted star partial
ordering using Lemma 2.5.

Theorem 2.7.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then

A(2)
#

≤WG B(2) if and only ifA
#

≤WG B.

Proof. Let the MN-SVDs ofA andB be as in the proof of Theorem 2.1. Considering Lemma
1.1, from (2.3), (2.4), and Lemma 2.5, we have

A(2) = U1D
2
aV

∗
1 = U

(
D2

a 0
0 0

)
V ∗,

B(2) = U2D
2
bV

∗
2 = U

(
D2

b 0
0 0

)
V ∗.

In this case, the MN-SVDs ofA andB can be rewritten as

A = U

(
Da 0
0 0

)
V ∗, B = U

(
Db 0
0 0

)
V ∗.

Thus, from Lemma 2.5, we have

A(2)
#

≤WG B(2) ⇒ A
#

≤WG B.
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Conversely, from Lemma 2.5,A
#

≤WG B is equivalent to

A = U

(
Da 0
0 0

)
V ∗, B = U

 Da′ 0 0
0 D 0
0 0 0

 V ∗.

Then

A(2) = U

(
D2

a 0
0 0

)
V ∗, B(2) = U

 D2
b 0 0

0 D2 0
0 0 0

 V ∗.

Therefore, from Lemma 2.5 again, the proof is completed. �

The characterization of the weighted star partial ordering can be obtained similarly using
Lemma 2.4, and is given in the following theorem.

Theorem 2.8.LetA, B ∈ Cm×n, r(A) = a, andr(B) = b. Then

A(2)
#

≤B(2) if and only ifA
#

≤B.

The following result was presented by Liu [9]. It is useful for studying the relation between
the minus ordering forA andB and that forA(2) andB(2).

Lemma 2.9. LetA, B ∈ Cm×n. Then

A
#

≤B if and only ifA
−
≤B,

(AB#
MN)#

MM = AB#
MN , and(A#

MNB)#
NN = A#

MNB.

Theorem 2.10. Let A, B ∈ Cm×n, r(A) = a, r(B) = b, (AB#
MN)#

MM = AB#
MN , and

(A#
MNB)#

NN = A#
MNB. Then

A(2)
−
≤B(2) if and only ifA

−
≤B.

Proof. According to(AB#
MN)#

MM = AB#
MN , (A#

MNB)#
NN = A#

MNB, the proof of Theorem
5.3.2 of [9], and the simultaneous unitary equivalence theorem [7], we have

A = U

(
Ec 0
0 0

)
V ∗, B = U

(
Fc 0
0 0

)
V ∗,

whereU ∈ Cm×mandV ∈ Cn×n satisfyU∗MU = Im andV ∗N−1V = In, andEc ∈ Cc×c
≥ and

Fc are real diagonal matrices,c = max{a, b}.
As in (2.3) and (2.4), we can obtain

A(2) = U

(
E2

c 0
0 0

)
V ∗, B(2) = U

(
Fc |Fc| 0

0 0

)
V ∗.

Thus, it is easy to verify that

(A(2)(B(2))#
MN)#

MM = A(2)(B(2))#
MN and

((A(2))#
MNB(2))#

NN = (A(2))#
MNB(2).

As a result,

A(2)
−
≤B(2) ⇔ A(2)

#

≤B(2).

By Theorem 2.8 and Lemma 2.9, the proof is completed. �
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3. WEIGHTED M ATRIX PARTIAL ORDERINGS AND M ATRIX FUNCTIONS

In this section, we study the relations between some weighted partial orderings of matrices
and the orderings of their functions. Here, we are interested in such matrix functions for which
r[f(A)] = r(A), i.e., functions for whichf(x) = 0 only for x = 0. These functions are said to
be nondegenerating.

The following properties off gathered in Lemma 3.1 will be used in subsequent parts of this
section.

Lemma 3.1. LetA, B ∈ Cm×n and letf be a nondegenerating matrix function. Then

(a) R(A) = R(f(A)).

(b) AB#
MN = (AA#

MN)1/2(BB#
MN)1/2 ⇔ f(A)f(B#

MN) = f((AA#
MN)1/2)f((BB#

MN)1/2).

Proof. (a). From the MN-SVD ofA, i.e., (1.2), and the property off , we have

R(A) = R(U1DV ∗
1 ) = R(U1) = R(U1f(D)V ∗

1 ) = R(f(A)).

(b). Similar to the proof of Theorem 2.1, letA = U1DaV
∗
1 andB = U2DbV

∗
2 be the MN-SVDs

of A andB respectively. Considering the definition of matrix functions, we obtain

f(A)f(B#
MN) =f((AA#

MN)1/2)f((BB#
MN)1/2)

⇔ U1f(Da)V
∗
1 N−1V2f(Db)U

∗
2 M = U1f(Da)U

∗
1 MU2f(Db)U

∗
2 M

⇔ V ∗
1 N−1V2 = U∗

1 MU2,

which together with (2.2) implies the proof. �

In the following theorems, we compare some weighted partial orderings of matrices with
orderings of their functions.

Theorem 3.2.LetA, B ∈ Cm×n and letf be a positive one-to-one function. Then

A
#

≤ B if and only if f(A)
#

≤ f(B).

Proof. From Definition 1.2(2) and Lemma 2.4, we have thatA
#

≤ B is equivalent to

AB#
MN = U1D

2
aU

∗
1 M = AA#

MN and A#
MNB = N−1V1D

2
aV

∗
1 = A#

MNA,

andf(A)
#

≤ f(B) is equivalent to

f(A)f(B)#
MN = U1f(Da)

2U∗
1 M = f(A)f(A#

MN) and

f(A)#
MNf(B) = N−1V1f(Da)

2V ∗
1 = f(A#

MN)f(A).

Then, using the properties off , the proof is completed. �

Theorem 3.3.LetA, B ∈ Cm×n and letf be a positive strictly increasing function. Then

A
#

≤WG B if and only if f(A)
#

≤WG f(B).

Proof. From Definition 1.1(2), Definition 1.2(3), and Lemma 2.5, we obtain thatA
#

≤WG B is
equivalent to

MAA#
MN = MU1D

2
aU

∗
1 M ≤L MU1DaDa′U∗

1 M = MAB#
MN ,

MAB#
MN = MU1DaDa′U∗

1 M ∈ Cm
≥ ,

and
NA#

MNB = V1DaDa′V ∗
1 ∈ Cn

≥;
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andf(A)
#

≤WG f(B) is equivalent to

Mf(A)f(A)#
MN = MU1f(Da)

2U∗
1 M ≤L MU1f(Da)f(Da′)U∗

1 M

= Mf(A)f(B)#
MN ,

Mf(A)f(B)#
MN = MU1f(Da)f(Da′)U∗

1 M ∈ Cm
≥

and
Nf(A)#

MNB = V1f(Da)f(Da′)V ∗
1 ∈ Cn

≥.

Therefore, the proof follows from the property off . �

We need to point out that the above results are not valid for theWGL partial ordering or for
the weighted Löwner partial ordering. However, it is possible to reduce the problem of compar-
ing theWGL partial ordering of matrices and theWGL partial ordering of their functions to a
suitable problem involving the weighted Löwner partial ordering. Thus, from Definition 1.1(2),
Definition 1.2(4), and Lemma 3.1, we can deduce the following theorem.

Theorem 3.4. Let A, B ∈ Cm×n and let f be a positive strictly increasing function. The
following statements are equivalent:

(a) A ≤WGL B if and only if f(A) ≤WGL f(B).

(b) (AA#
MN)1/2 ≤WL (BB#

MN)1/2 if and only iff((AA#
MN)1/2) ≤WL f((AA#

MN)1/2).

Remark 1. It is worthwhile to note that some of the results of Section 3 can be regarded as
generalizations of those in Section 2. For example, iff(t) = t2, thenf(A) = U1D

2V ∗
1 = A(2),

hence, in this case, Theorem 3.2 and Theorem 3.3 will reduce to Theorem 2.8 and Theorem 2.7,
respectively.
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