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ABSTRACT. In this note we give a hecessary and sufficient condition in order that an inequality
established by A. Mc D. Mercer to be true for every convex sequence.
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1. INTRODUCTION

In [1] A. Mc D. Mercer proved the following result:
If the sequencéuy, } is convex then

(1.1) i{nil—;—n@ﬂu@o

k=0
In [2] this inequality was generalized to the following:
Suppose that the polynomial

k=0
hasx = 1 as a double root and the coefficientsk = 0, 1,...,n — 2 of the polynomial
> ko @ " - k
k=0

are positive. Then
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if the sequencéuy } is convex.

The aim of this note is to show that the inequalfty [1.4) holds for every convex seqfierice
if and only if the polynomial given by (112) has= 1 as a double root and the coefficients
(k=0,1,...,n — 2) of the polynomial given by (1]3) are positive.

2. A RESULT oF TIBERIU PoPoviICIU
Let n be a fixed natural number and
(21) Top <1 << Ty

n + 1 distinct points on the real axis. We denote $yhe linear subspace of the real functions
defined on the set of the poinis (2.1).alf, a1, . .., a,, aren + 1 fixed real numbers we define
the linear functional, A : S — R by

(2.2) A(f) = anf(ax).

T. Popoviciu ([3]) proved the following results:

Theorem 2.1.

(a) The functionalA is zero for every polynomial of degree at the most one if and only if
there exist the constants), a4, .. ., a,,_» iIndependent of the functiofy such that the
following equality holds:

n—2

(2.3) A(f) = Zoék[xk7$k+1,xk+2;f]7

k=0

where[zy, xr11, Tr12; f] is divided difference of the functioh
(b) If there exists an indek (0 < k < n — 2) such thaty, # 0, then

(2.4) A(f) =0,
for every convex functiofi if and only if

(2.5) a; >0, 1=0,1,...,n—2.

3. MAIN RESULT

Theorem 3.1. Let ag, ay,...,a, ben + 1 fixed real numbers such that;_ a7 > 0. The
inequality
(3.1) Z arur > 0

k=0

holds for every convex sequeniae, } if and only if the polynomial given by (1.2) has=1 as
a double root and all coefficients of the polynomial given by (1.3) are positive.

Proof. The sufficiency of the theorem was proved by A. Mc D. Mercelin [2].
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We suppose that the inequalify (8.1) is valid for every convex sequence. The seqfignces
{-1}, {k} and{—k} are convex sequences. By (3.1) we get

(3.2)

We denote by, f : [0,1] — R, the polygonal line having its verticd$ , u;,), k =0,1,...,n.
The sequencéu, } is convex if and only if the functiorf is convex.

Let us denote by
EYIC

k=0
The inequality[(3.]1) holds for every convex sequefeg} if and only if
(3.3) A(f) 20
for every functionf which is convex on the sdi, £,..., 2},
By (3.2) we have
A(P)=0

for every polynomialP having its degree at the most one. Using Popoviciu’s Theprem 2.1, it
follows that there exist the constantg, o, . . ., a,_o, independent of the functiofisuch that

n—2

k' k+1 k+2
(34) A(f) _Zak |:Ea n 5 n 7f:| )
k=0
for every functionf defined of the sef0, +,..., 2},
By the equality
= kk+1 k+2 = k
Zak |:ﬁa n ) n 7f:|_zakf(ﬁ>7
k=0 k=0
we geto, = S¢p, k=0,1,...,n—2.

Becauser = 1 is a double root for the polynomial given Hy (]L..2) we have

Z Ck 7é 0.
k=0

Using again Popoviciu’s Theorem (b)(f) > O ifand only if¢;, > 0,k =0,...,n — 2, and
our theorem is proved. O

4. ANOTHER PRroOOF oF ((1.1))

Let us consider the Bernstein operafsyy,
. k
@1) Bu(f)0) = st (£,
k=0

wherep, x(z) = (7)z*(1 —2)" %, k=0,1,...,n.
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It is well known that for every convex functiof,, B,, is a convex function too. For such a
function, we have, by Jensen’s inequality,

4.2) | BN = .00 (3):
On the other hand we have
(43) [ st =

o n+1

1 n\ 1
Dn.k (5) = <k>2_n’ k=0,1,...,n.

Now, the inequality[(1]1) follows by (4.2) and (4.3).
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