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ABSTRACT. By using the theory of majorization, the following inequalities of Jensetafte
Svrtan-Fan type are established: die an intervalf : I — Randt € I,z,a,b € I". If a; <

oS <bp <o < brar by < -o- < an by f(E) >0, f/(8) >0, f7(t) >0, f7(t) <0
foranyt € I, then

FA@) _ fun@) __ Fesinl®) _ inl@) __ frnle) _ AU(@)

FA@) — fan(®) = Jrr1a(0) T frn(b) = ) AGFR)
the inequalities are reversed féf'(t) < 0, f"/(¢t) > 0,Vt € I, whereA(-) is the arithmetic
mean and

e D M G LS

k) 1<ii<-<ip<n

Key words and phrasesiensen’s inequality, [Baric-Svrtan’s inequality, Fan’s inequality, Theory of majorization, Hermite
matrix.
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1. INTRODUCTION
In what follows, we shall use the following symbols:

2= (21, aa); f@) = (), fla) Gla) = (e 2)

A(m)::x1+x2+ $; RY :=[0,+00)"; RY, :=(0,400)";

n
I" :={x|z; € I,i=1,...,n,1isaninterva};
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ﬁm@w:é% 3 fcﬁj;#i£i>, F=1. . .m

kJ 1<ij<-<ig<n

Jensen’s inequality states that: Lfet I — R be a convex function and € I™. Then

(1.1) f(A(x)) < A(f(2)).

This well-known inequality has a great number of generalizations in the literature (see [1] —
[6]). An interesting generalization @.1)) due to Péaric and Svrtan [5] is:

(1-2) f(A(Q:)) = fn,n<x) <. < fk—l—l,n(x) < fk,n(x) <. < fl,n(x) = A(f(x))
In 2003, Tang and Wen[6] obtained the following generalizatiofif):
(13) fr,s,n > > fr,s,i > > fr,s,s > > fr,j,j > > fr,r,’r = 07

where

fr,s,n = (n> (Z) (f?",n - fs,n)a fk,n = fk,n(l'% 1 S r S S S n.

r
Ky Fan'’s arithmetic-geometric mean inequality is (S€e [7]): Let (0,1/2]". Then
Alx) | C)
Al—2) — G —z)
In this paper, we shall establish further extensiongldf) and(1.4) as follows:

(1.4)

Theorem 1.1.Let] be aninterval. Iff : [ — R, a,b € I" (n > 2) and

() ag < <ap <b, <---<bya +b; < <ap + by
(i) f(t) >0, f'(t) >0, f"(t) >0, f"(t) < 0foranyt € I,

then
f(A@) _ fanla) _  _ feriw(@) _ fowla) _ _ fia(e)  A(f(a))
O FA®) ™ fun) = Ferra® = fen® =S Fiad) T AGG)
The inequalities are reversed f@f' (t) < 0, f”'(t) > 0, Vt € I. The equality signs hold
ifand only ifa; = --- =a, andb; = --- = b,,.

In Sectior{ B, several interesting results of Ky Fan shall be deduced. In Sgjction 4, the matrix
variant of (1.5)) will be established.

2. PROOF OF THEOREM [1.]
Lemma2.1.Letf : I — R be a function whose second derivative existsamd",
aeQ,={aeR} a;+--+a,=1}
Writing
1
S(a,z) = ] Z flaamy, + -+ any,),

7

where) , ., denotes summation over all permutationd 0f2, . .., n},

oy =g [F09] aper
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wi(x) == g, + aowy, + g ;T
=3

UZ(.ZC) =0T, + aexy, + Z Q;5T5;, 1= (il, ig, e ,Zn)

Then there exist;(a) betweeny;(a) andvi(a)_, and¢; (b) betweeny;(b) andwv;(b) such that
(21) (Oél — 042) <% — %)
_ 1 f(&(a) (uila) —vi(a))*  f"(&(b))(ui(b) — vi(h))?
ol 2. X { S(a, a) a S(a, b) ’

" igein 1<i1<i2<in

where), ; denotes the summation over all permutationgio®, ..., n} \ {71, i2}.

Proof. Note the following identities:

9IS Y et o)

’ i3 “ip 1<i1#i2<n

S o) + fwa))

13++0in 1<01 <12<n

ai () + F(00] = [ () — (0] — )

(a1 — o) ((%i - 6742) ] > 2| (vi)] (a1 — ) (wi, — 24,)

13++0in 1<01 <12<n

(2.2) =S 1)~ £l ).

" igein 1<i1<ip<n

0
s () + ()] -

By F'(a) = log S(a,a) — log S(«,b) and(2.2), we have
oF 8F>

(a; — ) (8741 " Doy
— (a1 — ) {[5(0@@]1 {asa(z " 853(3; “)}

sty |22 2D

_ 1 [f"(ui(a)) — f'(vi(a))][ui(a) — vi(a)]
ol Z Z { S(a,a)

’ 131 1<i1<ig<n

_ (uai(0)) = f(wi(0)][ws ()_Ui(b)]}

S(a,b)
1 f(&(a)[ui(a) —vi(@)® " (&())[ui(b) — vi(b)]®
ol Z @;ggn{ S(a, a) a S(a,b) } ‘
Here we used the Mean Value Theorem fi). This completes the proof. O

Lemma 2.2. Under the hypotheses of Theorem| 1£1is a Schur-convex function or a Schur-
concave function of,,, whereF is defined by Lemnja 2.1.
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Proof. It is easy to see thd?,, is a symmetric convex set arfd is a differentiable symmetric
function on(2,,. To prove thatf’ is a Schur-convex function dn,,, it is enough from([8, p .57]
to prove that

(2.3) (1 — an) (27[7 — STF) >0, VaeQ,.
To prove(2.3)), it is enough from Lemmja 2.1 to prove

f"(&(@)[uia) —vi(@)” [ (& (0))[ui(b) — vi(b))”
(2:4) (e a) = S(ab) ‘

Using the given conditiong, < --- < a, <b, <--- <by, f(t) > 0andf’(t) > 0, we obtain
thata; < b, (j = 1,2,...,n) and the inequalities:

1 1
(2:5) S(a, a) = S(a,b) > 0.

By the given condition (i) of Theorem 1.1 and< ; < iy < n, we have

aig _ail Z bil - biz 2 0

and

(2.6) [ui(a) — vi(a)]* = [ui(b) —vi(b)]* = 0.
From (2.5)) and (2.6)), we get

2.7) [ui(a) — vi(a)]® > [wi(b) = vi(O)) 0.

S(a, a) S(a, b) -
Note thata, b € 1", u;(a), vi(a), u;(b), v;(b) € I, and
min{u;(a),v;(a)} < &(a)
< max{u;(a),v;(a)}
< min{u;(b), v;(b) }
< &(b)
< max{u;(b),v;(b)}.

It follows that

(2.8) &i(a) <&(b)  (&Gi(a),&(b) € 1).
If f"(t) >0, f”(t) < 0foranyt € I, from these and2.§) we get
(2.9) f'(&(a)) = f7(&(b)) > 0

Combining with(2.7) and (2.9), we have proven tha() holds, henceF is a Schur-convex
function on(,,.
Similarly, if f”(t) <0, f”(t) > 0 for anyt € I, we obtain

(2.10) —f"(&(a)) =z —f"(&(b)) > 0

Combining with(2.7)) and (2.10]), we know that the inequalities are reversedni) and.
Therefore [ is a Schur concave function &b,. This ends the proof of Lemn@ 2.
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Remark 1. Whena; # as, there is equality in2.3) if a; = -+ = a, andb; = -+ = b,.

In fact, there is equality in2.3)) if and only if there is equality ir[2.5)), (2.8)), (2.9) and the
first inequality in(2.6)) or all the equality signs hold i2.6). For the first case, by, < --- <

a, < b, <--- < b, wegeta; =--- =a,,b =--- =10, Forthe second case, we have
a;, —a;, =0="b; —by,. Sincel <i; < iy < nandiy,i, are arbitrary, we get; = - - - = a,,
by =---=b,. Clearly, ifa; = --- = a,, by = - - - = b,, then(2.3)) reduces to an equality.

Proof of Theorem 1]1First we note that if

S T —1
o=aqp= |k k... k" ,0,...,0],

k

we obtain that

S(ak, z) = frn(2)
and
Jin(a)
frn(D)

By Lemma[2.2, we observe thdt(a) is a Schur-convex(concave) function 6f,. Using
ape1 < ag for ag, a1 € Q, and the definition of Schur-convex(concave) functions, we have

[8]

(2.11) F(ay) = log

(2.12) Flag) < (>)F(ag), k=1,....,n—1

It follows from and(2.12) that (1.5)) holds. Sincey,;1 # a;, combining this fact with
Remark{ 1, we observe that the equality signs holdlin)) if and only if a; = --- = a,,
by = --- = b,. This completes the proof of Theor¢m|1.1. O

3. COROLLARY OF THEOREM [1.1

Corollary3.1. LetO <r < 1,5 >1,0<a; <27V b= (1—ad)"/*,i=1,...,n, f(t) =1,
t € (0,1). Then the inequalities ifiL.5)) are reversed.

Proof. Without loss of generality, we can assume that a; < --- < a,. By b; = (1 — af)l/s
and0 < a; <27Y¢ (i =1,...,n), we have

O<a; <+ <a, <27/ <h, <+ <h < 1.

Now we takeg(t) :=t + (1 — t5)/5(0 < t < 27YV%),50¢/(t) = 1 — (1 — ¢5)(M/s) =151 >,
i.e., g is an increasing function. Thus

a1+b1§"'§an+bn~

It is easy to see that(t) = t" > 0, f/'(t) = rt"' >0, f'(t) = r(r — D" 2 <0, f"(t) =
r(r—1)(r—2)t"=3 > 0 foranyt € (0,1). By Theorenf 1]1, Corollafy 3.1 can be deduced. This
completes the proof. O

Corollary 3.2. Leta € (0,1/2]™. Writing

_1_

[AG;:c]k,n:( 0 %)()

1< << <n
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we have
Ala)  [AG;alnn
A(l—a)  [AG;1 —d],,
> > [AG, a]kJrl,n > [AG, a]k,n
T [AG: 1 —algr1.  [AGE 1 — alg,
[AG; aly G(a)

3.1 > > T = '
3.1) - T [AG;1—a|;, Gl -—a)
Equalities hold throughout if and only if, = - - - = a,,. (Compare(3.1)) with [7,10,[11)
Proof. We chooses = 1 in Corollary[3.]. Raising each term to the powerlgf and letting
r— 0in (L.3), can be deduced. This ends the proof. O

Corollary 3.3. Let f : I — R be such thaff(t) > 0, f'(t) > 0, f”(t) > 0, f”(t) < 0 for any
tel. Letd: [y — I beincreasing and : [, — I be decreasing, and suppose tidat- ¥ is
increasing andsup ® < inf W. Then

f(’[0|_1 f[o <I>dt) ) [, F(@)dt
£ (1ol J;, wat) ~ Jig FOV)AE

where| | is the length of the intervaly. The inequality is reversed fgi’(¢t) < 0, f"'(t) > 0,
vt e I.

In fact, since is an integral version of the inequali (i((z)))) < ’2(({02‘2)))) , therefore
holds by Theorerpn 1]1.

According to Theorerh T} 1(1.7]) implies inequalities(1.1]), and (3.1)), and the impli-
cation to is obvious. Consequently, Theor¢gm]1.1 is a generalization of Jensen’s
inequality (1.1]), Petaric-Svrtan’s inequalitiedl.2) and Fan’s inequality[1.4). Note that The-
orem[1.]1 contains a great number of inequalities as special cases. To save space we omit the
details.

(3.2)

4. A M ATRIX VARIANT

Let A = (aij)nxn(n > 2) be a Hermite matrix of ordet. Thentr A = " | a;; is the trace
of A. As is well-known, there exists a unitary matfixsuch thatd = U diag(Ay, ..., \,)U",
whereU* is the transpose conjugate matrix@fand the components of = (\y,..., \,) are
the eigenvalues offl. ThustrA = \; +---+ \,. Let X € I". Then, forf : [ — R, we
definef(A) := Udiag(f(\1),..., f(A))U* (seel[9]). Note thatliag(Aq,...,\,) = U*AU.
Based on the above, we may use the following symbols: IfAfowve keep the elements on the
cross points of they, ..., i,th rows and the,, . . ., i,th columns; replacing the other elements
by nulls, then we denote this new matrix By,..,.. Clearly, we haver[U*AU];,..., = \;, +
---+ Aj,. Thus we also define that

Fen(A) = é Z F ()\il - k - )\ik>
1

1< <-<1p<n
1 *
k) 1<ii<-<ip<n

In particular, we have

n

fialA) = =37 FO) = (7 (A));
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) = f (A2 — (L))

trdA — \; 1 E-trA— A
E _t - - -
fnln f<n_1) nrf( n—l )a
whereF is a unit matrix. In fact, from

E-ttA— A A— A—
U* (—tr )U:diag (tr Al,...,tr )\”),
n—1 n—1 n—1

E-trA—A trA — \;
t —_— — .
() -2 (=)
Based on the above facts and Theofem 1.1, we observe the following.

we get

Theorem 4.1.Let I be an interval and lef\, . € I"™. Suppose the components\ofi are the
eigenvalues of Hermitian matricesand B. If
(i) the functionf : I — R satisfiesf(t) > 0, f'(t) > 0, f"(t) > 0, f"(t) < 0 for any
t € I, and we have

f(Grd) _of (5 ferrn(4) _ fun(A) trf(A)
F(uB) = wf (FBB) = S50 (B) S foaB) S wf(B)
The inequalities are reversed fgi’(t) < 0, f”'(t) > 0, V¢t € I. Equalities hold

throughoutifand only if; = --- = X\, andu; = - - = p,.

Remark 2. If I = (0,1/2],0 < Ay < --- <\, < 1/2, B=F — A, then the precondition (i)
of Theoreni 4.1l can be satisfied.

Remark 3. Lemmg 2.2 possesses a general and meaningful result that should be an important
theorem. Theorein 1.1 is only an application of Lenima 2.2.

Remark 4. If f(¢) <0, f'(t) < 0for anyt € I, then we can apply Theorgm [L.1+of.

Remark 5. In [12,[13], several applications on Jensen’s inequalities are displayed.
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